Skip to main content
Top
Gepubliceerd in: Netherlands Heart Journal 2/2023

Open Access 15-07-2022 | Original Article

The Dutch national paediatric heart transplantation programme: outcomes during a 23-year period

Auteurs: Stefan Roest, Marijke H. van der Meulen, Lennie M. van Osch-Gevers, Ulrike S. Kraemer, Alina A. Constantinescu, Matthijs de Hoog, Ad J. J. C. Bogers, Olivier C. Manintveld, Pieter C. van de Woestijne, Michiel Dalinghaus

Gepubliceerd in: Netherlands Heart Journal | Uitgave 2/2023

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Abstract

Background

Since 1998, there has been a national programme for paediatric heart transplantations (HT) in the Netherlands. In this study, we investigated waiting list mortality, survival post-HT, the incidence of common complications, and the patients’ functional status during follow-up.

Methods

All children listed for HT from 1998 until October 2020 were included. Follow-up lasted until 1 January 2021. Data were collected from the patient charts. Survival, post-operative complications as well as the functional status (Karnofsky/Lansky scale) at the end of follow-up were measured.

Results

In total, 87 patients were listed for HT, of whom 19 (22%) died while on the waiting list. Four patients were removed from the waiting list and 64 (74%) underwent transplantation. Median recipient age at HT was 12.0 (IQR 7.2–14.4) years old; 55% were female. One-, 5‑, and 10-year survival post-HT was 97%, 95%, and 88%, respectively. Common transplant-related complications were rejections (50%), Epstein-Barr virus infections (31%), cytomegalovirus infections (25%), post-transplant lymphoproliferative disease (13%), and cardiac allograft vasculopathy (13%). The median functional score (Karnofsky/Lansky scale) was 100 (IQR 90–100).

Conclusion

Children who undergo HT have an excellent survival rate up to 10 years post-HT. Even though complications post-HT are common, the functional status of most patients is excellent. Waiting list mortality is high, demonstrating that donor availability for this vulnerable patient group remains a major limitation for further improvement of outcome.
What’s new?
  • Mortality in paediatric patients on the waiting list for heart transplantation (HT) is high (22%).
  • Waiting list mortality significantly decreased after the introduction of paediatric ventricular assist devices in 2007 (41% before 2007 vs 17% after 2007, p = 0.03).
  • The survival rate post-HT is excellent with a 1-, 5‑, and 10-year survival of 97%, 95%, and 88%, respectively.
  • Common complications post-HT are rejections (50%), Epstein Barr virus infections (31%), cytomegalovirus infections (25%), post-transplant lymphoproliferative disease (13%), and cardiac allograft vasculopathy (13%).
  • Even though comorbidities are common, the functional status of patients is good with a median Karnofsky/Lansky score of 100.

Introduction

Heart transplantation (HT) is a widely accepted treatment option for selected adults and children with end-stage heart failure refractory to medication [1, 2]. In children, only 600–700 HTs are performed each year by approximately 120 centres worldwide [2]. Therefore, most centres perform only a limited number of procedures annually with 73% of centres performing 1–4 paediatric HTs a year [3]. In Europe, the majority of centres report < 5 HTs/year, whereas the majority of centres in North America report > 10 HTs a year [2, 3]. Beyond infancy, (dilated) cardiomyopathy is the most important indication for HT in Europe (55%), while in North America cardiomyopathies and congenital heart disease (CHD) are both seen in 40% of patients[2]. Waiting list mortality is high with percentages reported between 18% and 40% despite the use of mechanical circulatory support (MCS), including paediatric ventricular assist devices (VADs) [47]. However, in children VADs are frequently associated with bleeding and thromboembolic events [79].
In the Netherlands, a paediatric HT programme was initiated at the Erasmus MC—Sophia Children’s Hospital in 1998. Since then, it has been serving as the national centre for end-stage heart failure and HT in children. Here, we report the outcomes of children listed for HT since 1998.

Methods

Patients

All children listed for HT at our centre between 1998 and October 2020 were included. Follow-up lasted until death, retransplantation, or 1 January 2021 (end of follow-up), whichever came first. Listing criteria were applied according to the International Society for Heart and Lung Transplantation (ISHLT) guidelines [1]. Use of MCS was registered. Primary endpoints were waiting list outcome (mortality, transplantation, delisting) and survival post-HT. Moreover, transplant-related complications were examined, including: (acute) rejection episodes, cardiac allograft vasculopathy (CAV), infections, malignancies (solid-organ malignancies, post-transplant lymphoproliferative disease (PTLD) and skin malignancies), kidney failure, and other complications. The functional status of the patient was determined by the 100-point Karnofsky/Lansky scale at the end of follow-up [1012]. The study was approved by the local medical ethics committee (MEC 2018–1348).

Donors

Collected donor characteristics included donor age, body weight, blood type, and total ischaemia time.

Heart transplantation procedure

All hearts transplanted were from ABO-compatible donors. The surgical procedure included a biatrial anastomosis; in patients with CHD a bicaval anastomosis technique could be used.

Immunosuppression

The immunosuppression consisted of induction with anti-thymocyte globulin (ATG), followed by triple therapy: before 2000, patients were treated with (1) steroids and successive tapering in the 1st year, (2) cyclosporine, and (3) azathioprine. After 2000, tacrolimus replaced cyclosporine and mycophenolate mofetil replaced azathioprine. Rejection therapy consisted of pulse-dose methylprednisolone (10–15 mg/kg), occasionally followed by ATG in the case of an insufficient response to methylprednisolone.

Graft surveillance

Surveillance endomyocardial biopsies were performed at: week 1–2, 3–4, 6, and 12, month 4–5, 6, 9, and 12 and whenever rejection was suspected. Rejection was graded according to the ISHLT classification: grades 2R and higher were considered relevant. Classifications before 2005 were revised according to the ISHLT guidelines [13]. CAV was graded according to the ISHLT guidelines and evaluated 1 and 2 years post-HT with coronary angiography and subsequently every 2 years by CT angiography or coronary angiography [14, 15].

Definitions

Hypertension was defined as the use of antihypertensive drugs, excluding the period immediately post-transplant. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections were defined as viral loads of > 1000 copies/ml irrespective of clinical symptoms or, in the presence of symptoms, with viral loads ≤ 1000 copies/ml.

Statistical analysis

Categorical variables are reported as numbers and percentages. Continuous variables are reported as means with standard deviation (SD) when normally distributed, and medians with 25th–75th percentile (interquartile range (IQR)) otherwise. Continuous variables were compared by Student’s t-tests (normal distribution) or Mann-Whitney U tests. Categorical analysis was conducted by χ2 and Fisher’s exact test. Time on waiting list and survival after HT were estimated using Kaplan-Meier curves and the log-rank test. All analyses were performed using IBM SPSS Statistics for Windows, version 25 (IMB Corp., Armonk, NY, USA).

Results

Patients

Eighty-seven patients were listed for HT at the age of 10.6 (IQR 3.0–13.9) years; 48 (55%) were female. Aetiology was dilated cardiomyopathy (64%), restrictive cardiomyopathy (13%), CHD (6%), and other (17%). Blood groups O (45%) and A (43%) were most common. Time from diagnosis to HT listing was 16 (IQR 3–57) months and 31% had a VAD pre-HT. Baseline characteristics are summarised in Tab. 1.
Table 1
Baseline characteristics of paediatric patients listed for heart transplantation during the study period (n = 87). Categorical variables are presented as absolute numbers with (percentages), continuous variables as medians and 25th–75th percentile (interquartile range)
Parameters
 
Age (years) at listing
10.6 (3.0–13.9)
– < 1 year old
10 (12)
– 1–10 years old
29 (33)
– ≥ 10 years old
48 (55)
Female
48 (55)
Diagnosis
 
– Congenital heart disease
 5 (6)
– Dilated cardiomyopathy
56 (64)
– Hypertrophic cardiomyopathy
 3 (3)
– Restrictive cardiomyopathy
11 (13)
– Non-compaction cardiomyopathy
 8 (9)
– Chemotherapy-induced cardiomyopathy
 4 (5)
Time from diagnosis of HF to listing for HT
 1.4 (0.3–4.8)
– Listed within 1 year after diagnosis
37 (43)
Eurotransplant status at listing
 
– Hospitalised
63 (72)
– At home
24 (28)
MCS on waiting list
27 (31)
– Berlin Heart
15 (56)
– Levitronix
11 (41)
– ECMO
 1 (4)
Blood group
 
– A
37 (43)
– B
 8 (9)
– AB
 3 (3)
– O
39 (45)
ECMO extracorporeal membrane oxygenation, HF heart failure, HT heart transplantation, MCS mechanical circulatory support

Waiting list outcome

Time on the waiting list was 54 (IQR 21–188) days. Nineteen (22%) patients died, 4 (4%) were delisted, and 64 (74%) underwent HT. Delisted patients improved (n = 2) or had a worsening condition prohibiting HT and subsequently died (n = 2). Waiting list mortality was associated with younger age (2.1 (IQR 0.9–11.6) years) and blood group O (80%). Reasons for death were VAD-related complications (47%) necessitating withdrawal of support and end-stage heart failure (53%). Patients who were listed within 1 year after diagnosis were more likely to be hospitalised (84% vs 64%, p = 0.04), on MCS (49% vs 18%, p = 0.002), and died more often while on the waiting list (35% vs 12%, p = 0.01). Seventeen patients were listed before the introduction of VADs in 2007, and 70 after 2007. Waiting list mortality decreased significantly after 2007 (41% vs 17%, respectively, p = 0.03). Patients with blood groups A and B had better outcomes than those with blood groups AB and O (p = 0.006) (Figs. 1 and 2).

Heart transplantation

Sixty-four children underwent HT at 12.0 (IQR 7.2–14.4) years and the majority (58%) were hospitalised before HT. Ischaemia time was 222 ± 46 min. Donors were 15 (IQR 9–25) years old. Donor and recipient characteristics are summarised in Tab. 2.
Table 2
Baseline characteristics of paediatric patients who underwent a heart transplantation (n = 64). Categorical variables are presented as absolute numbers with (percentages), continuous variables as means ± standard deviation when normally distributed or medians with 25th–75th percentiles (interquartile range) when not normally distributed
Parameters
 
Donor
 
Age (years)
 15 (9–25)
Female
 34 (53)
BMI
 20.5 (17.4–24.0)
Country of origin
 
– Netherlands
 14 (22)
– Germany
 31 (48)
– Belgium
 10 (16)
– Other
  9 (14)
Recipient
 
Age (years) at HT
 12.0 (7.2–14.4)
– < 1 year old
  2 (3)
– 1–10 years old
 17 (27)
– ≥ 10 years old
 45 (70)
Female
 35 (55)
Time on waiting list (days)
 52 (20–169)
Ischaemia time (min)
222 ± 46
Eurotransplant status at HT
 
– Hospitalised
 37 (58)
– At home
 27 (42)
Blood group
 
– A
 32 (50)
– B
  8 (13)
– AB
  2 (3)
– O
 22 (34)
Induction therapy with ATG
 64 (100)
ATG anti-thymocyte globulin, BMI body mass index, HT heart transplantation
Follow-up duration after HT was 7.4 (IQR 3.1–10.5) years. Use of immunosuppressants at different time points is shown in Tab. 3. The 1‑, 5‑, and 10-year survival was 97%, 95%, and 88%, respectively (Fig. 3). One patient underwent retransplantation 15.6 years after the first HT due to right-sided heart failure secondary to long-standing tricuspid valve regurgitation, following unsuccessful tricuspid valve repair.
Table 3
Immunosuppressant use at discharge, 1 year after heart transplantation (HT) and at last follow-up. All data are presented as absolute numbers with (percentages)
Immunosuppressant
At discharge
(n = 64)
One year post-HT
(n = 58)
At last follow-up
(n = 64)
Tacrolimus
58 (91)
56 (97)
64 (100)
Cyclosporine
 6 (9)
 2 (3)
 0 (0)
Mycophenolate mofetil
59 (92)
29 (50)
26 (41)
Prednisolone
64 (100)
30 (52)
19 (30)
Everolimus
 0 (0)
 4 (7)
 6 (9)
Azathioprine
 1 (2)
 1 (2)
 0 (0)
Sirolimus
 0 (0)
 0 (0)
 2 (3)
Monotherapy
 0 (0)
13 (22)
21 (33)

Rejections

Patients underwent a median of 10 (IQR 9–14) biopsies. Rejections were found in 32 (50%) patients with a median of 1 (IQR 0–2) rejection per patient. Time to first rejection was 30 (IQR 11–111) days. Between discharge and the end of the 1st year post-HT, 31% of patients developed at least one rejection episode. Three patients had severe rejections with compromised haemodynamics; 2 patients had a histologically proven severe (grade 3R) rejection. The third patient was too unstable to undergo a biopsy. One could be treated with intravenous methylprednisolone only; the second patient needed inotropic support as well. The third patient developed biventricular failure requiring extracorporeal membrane oxygenation. Two out of 3 patients had been non-compliant with their medication. Overall, non-compliance was demonstrated in 8 (13%) patients during follow-up.

Infections

EBV and CMV infections were found in 20 (31%) and 16 (25%) patients, respectively. Time between HT and EBV infection was 5 (IQR 4–10) months, for CMV infection 4 (IQR 1–6) months. Other infections included herpes zoster (14%), Candida (5%), Aspergillus (3%), Pneumocystis jirovici (3%), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections (3%).

Renal function, diabetes and hypertension

Acute kidney injury occurred in 29 (45%) patients post-HT, of whom 4 (6%) needed temporary renal replacement therapy. In 2 patients (3%) kidney failure (estimated glomerular filtration rate < 15 ml/min per 1.73 m2 and/or renal replacement therapy) occurred during end-stage heart failure of the donor heart. No patient developed kidney failure due to chronic calcineurin inhibitor use. Diabetes mellitus was seen in 7 (11%) patients, of whom 5 (8%) were insulin-dependent. Hypertension was present in 28 (44%) patients at the end of follow-up.

Malignancies

Eight (13%) patients developed PTLD at a median of 5 (IQR 4–7) months post-HT. All cases were related to EBV infections. Six patients were treated with rituximab, 1 by lowering immunosuppression. One patient developed a full-blown lymphoma and required extensive chemo-radiotherapy. This patient has remained in remission for more than 5 years after the end of treatment. In 1 patient, a melanoma was successfully treated by local resection.

Cardiac allograft vasculopathy

CAV developed in 8 (13%) patients. CAV grade 1, 2, and 3 were seen in 2 (3%), 2 (3%), and 4 (6%) patients, respectively. Patients with CAV grade 2 or 3 were mostly treated with medication adjustments and stents. In 1 patient, CAV 3 was diagnosed at autopsy after sudden death within the 1st year post-HT. Three out of 8 patients (38%) with CAV had been non-compliant during follow-up.

Other

Neurological complications were seen in 9 patients (14%), including posterior reversible encephalopathy syndrome (n = 3), epileptic insult (n = 3), peripheral neuropathy (n = 1), cerebrovascular accident (n = 1), and transient ischaemic attack (n = 1).

Performance status

On the Karnovsky/Lansky scale, at the last follow-up visit, patients scored 100 (IQR 90–100) points, indicating that the majority of patients were able to perform normal daily activities.

Discussion

In this study, we report 23 years’ experience of a national programme for paediatric HT in the Netherlands. In line with ISHLT registry reports, it is a small- to medium-sized programme [2, 3]. Waiting list mortality (22%) was high, but outcomes were excellent in those who reached transplantation, with a 1‑, 5‑, and 10-year survival of 97%, 95%, and 88%, respectively, and overall good functional outcomes.
Waiting list mortality in our study was high (22%) but is in line with previous studies, which have reported a waiting list mortality of 18–40% [46]. Blood type significantly influenced waiting list outcome, which is in line with Eurotransplant experience [6], even though this was not seen in a North American study [16]. In a previous study, we reported a low rate of listing and transplantation in children in the 1st year after presentation as compared to several other registries [17]. There was no increase in early mortality, nor in transplantation rate in subsequent years [17]. Our strategy to reserve listing early after presentation for the sickest children is underscored by the characteristics of those who were listed within 1 year of presentation, with high rates of hospitalisation (84%) and VAD support (49%). Mortality in patients listed within 1 year was high (35%), despite the fact that as of 2011 all children (< 16 years) within Eurotransplant are listed with a high urgency status and those who are hospitalised are prioritised and have the highest international urgency status (IHU) [6]. Before 2011, an IHU had to be specifically requested and was granted for all hospitalised children [6]. In our study, the introduction of VAD support in 2007 had a major impact on waiting list mortality. Since then, waiting list mortality has decreased from 41% to 17% and was mostly related to VAD support complications [8].
Survival in our cohort compares favourably to that of other single-centre studies with reported 1‑, 5‑, and 10-year survival of 83–92%, 74–82%, and 63–80%, respectively [4, 5, 1822]. Similarly, the ISHLT registry reported 1‑year survival of 92% and a 5-year survival, in those who survived the 1st year post-HT, of 91% in the most recent era [2]. Of note is that HT for cardiomyopathy has better outcomes than CHD [2]. In our cohort, cardiomyopathy was the main indication for transplantation but, even when taking this into account, the outcome of our patients is at least comparable with international reported data [2, 20, 21].
Rejection is common post-HT [3] and 50% of our patients had at least one rejection, of which 31% occurred between discharge and the 1st year post-HT. This is in line with other single-centre studies [4, 5, 21], while the ISHLT demonstrated a rejection incidence between discharge and 1 year post-HT of 13–24% [3]. A possible explanation for this could be that younger patients are at a lower risk of developing rejections, and in our cohort the median age was significantly higher than that of those included in the ISHLT registry [3]. PTLD is also a common complication post-HT with the ISHLT reporting an incidence in children of 11% after a follow-up of 10 years. Skin and solid-organ malignancies are rarely seen in children [2, 3]. This is in accordance with our study [3]. Finally, CAV is an important complication with a high morbidity and mortality rate with an incidence in the literature between 20% and 40% at 10 years and 50% at 15 years post-HT [3, 5, 1921]. Even though our results seem favourable with an incidence of 13% at 7.4 years, definite conclusions on the incidence in our cohort cannot be drawn yet.
A major concern in paediatric HT recipients is non-compliance to medication, with adolescent recipients at the highest risk [20, 23]. This has been suggested as one of the reasons why patients between 10 and 18 years old have an impaired survival compared to younger age groups [2]. Our study also suggests that non-compliance may significantly increase the risk of severe rejections and the development of CAV. It is essential to support patients during adolescence and to emphasise the importance of compliance to medication.
Our study has several limitations. First, we report a retrospective analysis of a single-centre, small- to medium-sized paediatric programme. However, it demonstrates that by concentrating experience in one centre nationwide, closely cooperating with referring hospitals and by combining the programme with adult HT experience, this treatment option can be offered with good outcomes. Furthermore, the number of patients surviving more than 10 years is still limited. Thus, our results are mainly a reflection of short- to medium-term outcome.
In conclusion, we demonstrate that HT in children can be performed with good survival and functional outcome, by concentration of the experience in one nationwide programme of relatively limited size. As in adults, donor availability for this vulnerable group remains a major limitation for further improvement of outcome.

Conflict of interest

S. Roest, M.H. van der Meulen, L.M. van Osch-Gevers, U.S. Kraemer, A.A. Constantinescu, M. de Hoog, A.J.J.C. Bogers, O.C. Manintveld, P.C. van de Woestijne and M. Dalinghaus declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Onze productaanbevelingen

Netherlands Heart Journal

Het Netherlands Heart Journal wordt uitgegeven in samenwerking met de Nederlandse Vereniging voor Cardiologie en de Nederlandse Hartstichting. Het tijdschrift is Engelstalig en wordt gratis beschikbaa ...

Literatuur
1.
go back to reference Mehra MR, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35:1–23.CrossRef Mehra MR, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35:1–23.CrossRef
2.
go back to reference Singh TP, et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: Twenty-fourth pediatric heart transplantation report—2021; focus on recipient characteristics. J Heart Lung Transplant. 2021;40:1050–9.CrossRef Singh TP, et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: Twenty-fourth pediatric heart transplantation report—2021; focus on recipient characteristics. J Heart Lung Transplant. 2021;40:1050–9.CrossRef
3.
go back to reference Rossano JW, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-second pediatric heart transplantation report—2019; Focus theme: Donor and recipient size match. J Heart Lung Transplant. 2019;38:1028–41.CrossRef Rossano JW, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-second pediatric heart transplantation report—2019; Focus theme: Donor and recipient size match. J Heart Lung Transplant. 2019;38:1028–41.CrossRef
4.
go back to reference Alexander PM, et al. Paediatric heart transplantation in Australia comes of age: 21 years of experience in a national centre. Intern Med J. 2014;44:1223–31.CrossRef Alexander PM, et al. Paediatric heart transplantation in Australia comes of age: 21 years of experience in a national centre. Intern Med J. 2014;44:1223–31.CrossRef
5.
go back to reference Gilljam T, et al. First two decades of paediatric heart transplantation in Sweden—Outcome of listing and post-transplant results. Acta Paediatr. 2011;100:1442–7.CrossRef Gilljam T, et al. First two decades of paediatric heart transplantation in Sweden—Outcome of listing and post-transplant results. Acta Paediatr. 2011;100:1442–7.CrossRef
6.
go back to reference Smits JM, et al. Pediatric heart allocation and transplantation in Eurotransplant. Transpl Int. 2014;27:917–25.CrossRef Smits JM, et al. Pediatric heart allocation and transplantation in Eurotransplant. Transpl Int. 2014;27:917–25.CrossRef
7.
go back to reference Chen JM, et al. A decade of pediatric mechanical circulatory support before and after cardiac transplantation. J Thorac Cardiovasc Surg. 2012;143:344–51.CrossRef Chen JM, et al. A decade of pediatric mechanical circulatory support before and after cardiac transplantation. J Thorac Cardiovasc Surg. 2012;143:344–51.CrossRef
8.
go back to reference Rohde S, et al. Pediatric ventricular assist device support in the Netherlands. World J Pediatr Congenit Heart Surg. 2020;11:275–83.CrossRef Rohde S, et al. Pediatric ventricular assist device support in the Netherlands. World J Pediatr Congenit Heart Surg. 2020;11:275–83.CrossRef
9.
go back to reference Jeewa A, et al. Risk factors for mortality or delisting of patients from the pediatric heart transplant waiting list. J Thorac Cardiovasc Surg. 2014;147:462–8.CrossRef Jeewa A, et al. Risk factors for mortality or delisting of patients from the pediatric heart transplant waiting list. J Thorac Cardiovasc Surg. 2014;147:462–8.CrossRef
10.
go back to reference Lansky SB, et al. The measurement of performance in childhood cancer patients. Cancer. 1987;60:1651–6.CrossRef Lansky SB, et al. The measurement of performance in childhood cancer patients. Cancer. 1987;60:1651–6.CrossRef
11.
go back to reference Karnofsky DA, Burchenal JH. The clinical evaluation of chemotherapeutic agents in cancer. In: MacLeod CM, Ed. Evaluation of chemotherapeutic agents. New York: Columbia University Press; 1949. p. 196. Karnofsky DA, Burchenal JH. The clinical evaluation of chemotherapeutic agents in cancer. In: MacLeod CM, Ed. Evaluation of chemotherapeutic agents. New York: Columbia University Press; 1949. p. 196.
12.
go back to reference Peng DM, et al. Impact of heart transplantation on the functional status of US children with end-stage heart failure. Circulation. 2017;135:939–50.CrossRef Peng DM, et al. Impact of heart transplantation on the functional status of US children with end-stage heart failure. Circulation. 2017;135:939–50.CrossRef
13.
go back to reference Stewart S, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24:1710–20.CrossRef Stewart S, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24:1710–20.CrossRef
14.
go back to reference Costanzo MR, et al. The International Society of Heart and Lung Transplantation guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.CrossRef Costanzo MR, et al. The International Society of Heart and Lung Transplantation guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.CrossRef
15.
go back to reference Mehra MR, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy–2010. J Heart Lung Transplant. 2010;29:717–27.CrossRef Mehra MR, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy–2010. J Heart Lung Transplant. 2010;29:717–27.CrossRef
16.
go back to reference Almond CSD, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation. 2009;119:717–27.CrossRef Almond CSD, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation. 2009;119:717–27.CrossRef
17.
go back to reference den Boer SL, et al. Management of children with dilated cardiomyopathy in The Netherlands: implications of a low early transplantation rate. J Heart Lung Transplant. 2015;34:963–9.CrossRef den Boer SL, et al. Management of children with dilated cardiomyopathy in The Netherlands: implications of a low early transplantation rate. J Heart Lung Transplant. 2015;34:963–9.CrossRef
18.
go back to reference Gambino A, et al. Outcome after pediatric heart transplantation: two decades of a single center experience. Eur J Cardiothorac Surg. 2007;32:220–4.CrossRef Gambino A, et al. Outcome after pediatric heart transplantation: two decades of a single center experience. Eur J Cardiothorac Surg. 2007;32:220–4.CrossRef
19.
go back to reference Groetzner J, et al. Results of pediatric cardiac transplantation—long-term results of a 15-year experience. Thorac Cardiovasc Surg. 2005;53(Suppl 2):S149–54.CrossRef Groetzner J, et al. Results of pediatric cardiac transplantation—long-term results of a 15-year experience. Thorac Cardiovasc Surg. 2005;53(Suppl 2):S149–54.CrossRef
20.
go back to reference Hetzer R, et al. State of the art in paediatric heart transplantation: the Berlin experience. Eur J Cardiothorac Surg. 2013;43:258–67.CrossRef Hetzer R, et al. State of the art in paediatric heart transplantation: the Berlin experience. Eur J Cardiothorac Surg. 2013;43:258–67.CrossRef
21.
go back to reference Huebler M, et al. Pediatric heart transplantation: 23-year single-center experience. Eur J Cardiothorac Surg. 2011;39:e83–9.CrossRef Huebler M, et al. Pediatric heart transplantation: 23-year single-center experience. Eur J Cardiothorac Surg. 2011;39:e83–9.CrossRef
22.
go back to reference Irving CA, et al. Outcomes following more than two decades of paediatric cardiac transplantation. Eur J Cardiothorac Surg. 2011;40:1197–202. Irving CA, et al. Outcomes following more than two decades of paediatric cardiac transplantation. Eur J Cardiothorac Surg. 2011;40:1197–202.
Metagegevens
Titel
The Dutch national paediatric heart transplantation programme: outcomes during a 23-year period
Auteurs
Stefan Roest
Marijke H. van der Meulen
Lennie M. van Osch-Gevers
Ulrike S. Kraemer
Alina A. Constantinescu
Matthijs de Hoog
Ad J. J. C. Bogers
Olivier C. Manintveld
Pieter C. van de Woestijne
Michiel Dalinghaus
Publicatiedatum
15-07-2022
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Netherlands Heart Journal / Uitgave 2/2023
Print ISSN: 1568-5888
Elektronisch ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-022-01703-w

Andere artikelen Uitgave 2/2023

Netherlands Heart Journal 2/2023 Naar de uitgave