Skip to main content


Swipe om te navigeren naar een ander artikel

01-12-2012 | Oral presentation | bijlage 1/2012 Open Access

Journal of Foot and Ankle Research 1/2012

The development of a kinematic model to quantify in-shoe foot motion

Journal of Foot and Ankle Research > bijlage 1/2012
Chris Bishop, Gunther Paul, Dominic Thewlis

Study aim

To develop a kinematic model to quantify in-shoe foot kinematics during gait.

Methods and material

Twenty-four participants (mean age - 21.8 yrs ± 3.5 yrs, height - 1.75 m ± 0.09 m and body mass - 71.0 kg ± 10.6 kg) were recruited. A marker set consisting of 20 x 10 mm markers was developed to track in-shoe joint kinematics [ 1]. Reliability and accuracy estimates of calibration marker placement on the shoe were determined. To track in-shoe foot motion, 12 mm diameter holes were punched in the shoe upper, with 25 mm marker wands mounted on the skin through the shoe (Figure 1). The marker set defined a four-segment kinematic model of the foot and ankle (shank, hindfoot, midfoot-forefoot complex and hallux). To define model parameters and moments of inertia, a CT scan was taken of 12 participant’s feet. The reconstruction of 3-D bone geometries from two-dimensional grey scale images (DICOM format) was conducted in Simpleware software. Shoe-mounted marker offsets and moments of inertia were inputted to Visual3D. The kinematics of the shoe were described before and after modification to quantify post-modification shoe integrity. The model was deemed sensitive if it detected changes in joint kinematics between conditions that were both statistically significant and greater than the calculated Standard Error of Measurement (SEM) [ 2].


The intra-rater (ICC = 0.68 – 0.99) and inter-rater reliability (ICC = 0.75 – 0.98) of marker placement on the shoe ranged from moderate to excellent. The error of calibration marker placement on the shoe was < 5 mm compared to skin-mounted markers.


In conclusion, we present an accurate and reliable kinematic model to describe in-shoe foot kinematics during gait.


ASICS Oceania provided the shoes for the study. Simpleware provided a complimentary software licence used to define model parameters.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Over dit artikel

Andere artikelen bijlage 1/2012

Journal of Foot and Ankle Research 1/2012 Naar de uitgave