Skip to main content
Top
Gepubliceerd in:

27-08-2021 | ORIGINAL PAPER

The Application of Machine Learning to Online Mindfulness Intervention Data: a Primer and Empirical Example in Compliance Assessment

Auteurs: Damien Lekkas, George Price, Jason McFadden, Nicholas C. Jacobson

Gepubliceerd in: Mindfulness | Uitgave 10/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Objectives

Machine learning models are a promising, yet underutilized tool within the mindfulness field. Accordingly, this work aimed to provide a practical introduction to key machine learning concepts through an illustrative investigation of the association between at-home mindfulness exercise compliance and stress reduction. To further interrogate the currently inconclusive nature of the compliance-outcome association within the mindfulness literature, the illustrative example leveraged a suite of machine learning techniques to highlight the unique affordances and perspectives of the predictive framework.

Methods

Foundational information regarding facets of the machine learning analytical process, including model types, data preprocessing, feature engineering, validation, performance evaluation, and model introspection, was presented. With emphasis on providing details and justifications regarding modeling decisions along the way, the work systematically applied these introduced concepts to a real-world data example. This permitted an opportunity to build, introspect, and derive insight from a model tasked to explore dynamics underlying patient compliance to mindfulness exercises within a web-based delivery setting.

Results

The constructed machine learning models suggested a moderate correlation of compliance with post-intervention reliable change in stress (r = 0.349 ± 0.018). Model introspection tools further revealed that a combination of both high consistency and high overall average compliance predicts a trend toward greater reduction in self-reported stress.

Conclusions

Results of the illustrative study suggested that compliance, in pattern and absolute magnitude, is a significant contributor to online mindfulness therapy outcomes. Moreover, modeling efforts implicate machine learning as a uniquely beneficial paradigm with which to explore nuanced questions in the mindfulness research space.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Academyof Child and Adolescent Psychiatry Committee on Health Care Access and Economics Task Force on Mental Health., A. (2009). Improving mental health services in primary care: Reducing administrative and financial barriers to access and collaboration. Pediatrics, 123(4), 1248–1251. https://doi.org/10.1542/peds.2009-0048CrossRef Academyof Child and Adolescent Psychiatry Committee on Health Care Access and Economics Task Force on Mental Health., A. (2009). Improving mental health services in primary care: Reducing administrative and financial barriers to access and collaboration. Pediatrics, 123(4), 1248–1251. https://​doi.​org/​10.​1542/​peds.​2009-0048CrossRef
go back to reference Kassambara, A. (2017). A practical guide to cluster analysis in R: Unsupervised machine learning. CreateSpace Independent Publishing Platform. Kassambara, A. (2017). A practical guide to cluster analysis in R: Unsupervised machine learning. CreateSpace Independent Publishing Platform.
go back to reference Kern, C., Klausch, T., & Kreuter, F. (2019). Tree-based machine learning methods for survey research. Survey Research Methods, 13(1), 73–93.PubMedPubMedCentral Kern, C., Klausch, T., & Kreuter, F. (2019). Tree-based machine learning methods for survey research. Survey Research Methods, 13(1), 73–93.PubMedPubMedCentral
go back to reference Krusche, A., Cyhlarova, E., King, S., & Williams, J. M. G. (2012a). Data from: Mindfulness online: A preliminary evaluation of the feasibility of a web-based mindfulness course and the impact on stress. [Data guide and codebook]. https://doi.org/10.5061/dryad.f4688 Krusche, A., Cyhlarova, E., King, S., & Williams, J. M. G. (2012a). Data from: Mindfulness online: A preliminary evaluation of the feasibility of a web-based mindfulness course and the impact on stress. [Data guide and codebook]. https://​doi.​org/​10.​5061/​dryad.​f4688
go back to reference Lengacher, C. A., Johnson-Mallard, V., Post-White, J., Moscoso, M. S., Jacobsen, P. B., Klein, T. W., Widen, R. H., Fitzgerald, S. G., Shelton, M. M., Barta, M., Goodman, M., Cox, C. E., & Kip, K. E. (2009). Randomized controlled trial of mindfulness-based stress reduction (MBSR) for survivors of breast cancer. Psycho-Oncology, 18(12), 1261–1272. https://doi.org/10.1002/pon.1529CrossRefPubMed Lengacher, C. A., Johnson-Mallard, V., Post-White, J., Moscoso, M. S., Jacobsen, P. B., Klein, T. W., Widen, R. H., Fitzgerald, S. G., Shelton, M. M., Barta, M., Goodman, M., Cox, C. E., & Kip, K. E. (2009). Randomized controlled trial of mindfulness-based stress reduction (MBSR) for survivors of breast cancer. Psycho-Oncology, 18(12), 1261–1272. https://​doi.​org/​10.​1002/​pon.​1529CrossRefPubMed
go back to reference Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 1198–1202.CrossRef Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 1198–1202.CrossRef
go back to reference Miller, Y. R., Medvedev, O. N., Hwang, Y.-S., & Singh, N. N. (2021). Applying generalizability theory to the perceived stress scale to evaluate stable and dynamic aspects of educators’ stress. International Journal of Stress Management, 28(2), 147–153. https://doi.org/10.1037/str0000207 Miller, Y. R., Medvedev, O. N., Hwang, Y.-S., & Singh, N. N. (2021). Applying generalizability theory to the perceived stress scale to evaluate stable and dynamic aspects of educators’ stress. International Journal of Stress Management, 28(2), 147–153. https://​doi.​org/​10.​1037/​str0000207
go back to reference Von Neumann, J., Kent, R., Bellinson, H., & Hart, B. (1941). The mean square successive difference. The Annals of Mathematical Statistics, 12, 153–162.CrossRef Von Neumann, J., Kent, R., Bellinson, H., & Hart, B. (1941). The mean square successive difference. The Annals of Mathematical Statistics, 12, 153–162.CrossRef
go back to reference Yeo, C. J. J., Barbieri, A., Roman, G., Wiesman, J., & Powell, S. (2019). Using smartphone mindfulness apps to increase trainee resilience and reduce burnout. Neurology, 92(15 Supplement), P2.9–005 Yeo, C. J. J., Barbieri, A., Roman, G., Wiesman, J., & Powell, S. (2019). Using smartphone mindfulness apps to increase trainee resilience and reduce burnout. Neurology, 92(15 Supplement), P2.9–005
Metagegevens
Titel
The Application of Machine Learning to Online Mindfulness Intervention Data: a Primer and Empirical Example in Compliance Assessment
Auteurs
Damien Lekkas
George Price
Jason McFadden
Nicholas C. Jacobson
Publicatiedatum
27-08-2021
Uitgeverij
Springer US
Gepubliceerd in
Mindfulness / Uitgave 10/2021
Print ISSN: 1868-8527
Elektronisch ISSN: 1868-8535
DOI
https://doi.org/10.1007/s12671-021-01723-4