Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2003

01-08-2003 | Original Article

Textural properties corresponding to visual perception based on the correlation mechanism in the visual system

Auteurs: Kenji Fujii, Shinofu Sugi, Yoichi Ando

Gepubliceerd in: Psychological Research | Uitgave 3/2003

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract.

We present a set of texture parameters that correspond to perceptual properties of visual texture. For machine vision or a computer interface, it is important that the computational measurements of texture correspond well to the perceptual properties. To understand the mechanism of our visual system, it is important to know how we extract or characterize information for texture perception. In this study, we show that the autocorrelation function (ACF) analysis provides useful measures for representing three salient perceptual properties of texture: contrast, coarseness, and regularity. The validity of the ACF analysis was examined by comparing the calculated factors to the subjective scores collected for various kinds of natural textures. The effectiveness of the analysis depends on the structure of the estimated ACF. When a texture has a harmonic structure, the estimated ACF has periodical peaks corresponding to the periods of the texture. Both perceived coarseness and regularity are strongly related to these peaks in the ACF. However, the estimated ACF does not have a periodical structure when the texture is random. In this case, the texture coarseness and regularity are represented by the decay rate of the ACF.
Literatuur
go back to reference Amandasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions Systems, Man and Cybernetics, 19, 1264–1274. Amandasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions Systems, Man and Cybernetics, 19, 1264–1274.
go back to reference Badcock, D. R., & Derrington, A. M. (1989). Detecting the displacement of spatial beats: No role for distortion products. Vision Research, 29, 731–739. Badcock, D. R., & Derrington, A. M. (1989). Detecting the displacement of spatial beats: No role for distortion products. Vision Research, 29, 731–739.
go back to reference Ben-Av, M. B., & Sagi, D. (1995). Perceptual grouping by similarity and proximity: Experimental results can be predicted by intensity autocorrelations. Vision Research, 35, 853–866. Ben-Av, M. B., & Sagi, D. (1995). Perceptual grouping by similarity and proximity: Experimental results can be predicted by intensity autocorrelations. Vision Research, 35, 853–866.
go back to reference Brodatz, P. (1966). Textures. New York: Dover. Brodatz, P. (1966). Textures. New York: Dover.
go back to reference Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology (London), 197, 551–566. Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology (London), 197, 551–566.
go back to reference Cho, R. Y., Yang, V., & Hallett, P. E. (2000). Reliability and dimensionality of judgments of visually textured materials. Perception & Psychophysics, 62, 735–752. Cho, R. Y., Yang, V., & Hallett, P. E. (2000). Reliability and dimensionality of judgments of visually textured materials. Perception & Psychophysics, 62, 735–752.
go back to reference Cross, G. R., & Jain, A. K. (1983). Markov random field texture models. IEEE Transactions Pattern Analysis and Machine Intelligence, 5, 25–39. Cross, G. R., & Jain, A. K. (1983). Markov random field texture models. IEEE Transactions Pattern Analysis and Machine Intelligence, 5, 25–39.
go back to reference Francos, J. M., Meiri, A. Z., & Porat, B. (1993). Unified texture model based on a 2-D Wold-like decomposition. IEEE Transactions on Signal Processing, 41, 2665–2678. Francos, J. M., Meiri, A. Z., & Porat, B. (1993). Unified texture model based on a 2-D Wold-like decomposition. IEEE Transactions on Signal Processing, 41, 2665–2678.
go back to reference Hammett, S. T., & Smith, A. T. (1994). Temporal beats in the human visual system. Vision Research, 34, 2833–2840. Hammett, S. T., & Smith, A. T. (1994). Temporal beats in the human visual system. Vision Research, 34, 2833–2840.
go back to reference Haralick, R. M. (1979). Statistical and structural approaches to textures. Proceedings of IEEE, 67, 786–804. Haralick, R. M. (1979). Statistical and structural approaches to textures. Proceedings of IEEE, 67, 786–804.
go back to reference Heeger, D., & Bergen, J. (1995). Pyramid-based texture analysis/synthesis. In Proceedings of ACM SIGGRAPH. Heeger, D., & Bergen, J. (1995). Pyramid-based texture analysis/synthesis. In Proceedings of ACM SIGGRAPH.
go back to reference Henning, G. B., Herz, B. G., & Broadbent, D. E. (1975). Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency. Vision Research, 15, 887–897. Henning, G. B., Herz, B. G., & Broadbent, D. E. (1975). Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency. Vision Research, 15, 887–897.
go back to reference Julesz, B. (1962). Visual pattern discrimination. IRE Transactions on Information Theory, 8, 84–92. Julesz, B. (1962). Visual pattern discrimination. IRE Transactions on Information Theory, 8, 84–92.
go back to reference Liu, F. (1997). Modeling spatial and temporal textures. PhD thesis, Massachusetts Institute of Technology. Liu, F. (1997). Modeling spatial and temporal textures. PhD thesis, Massachusetts Institute of Technology.
go back to reference Liu, F., & Picard, R. W. (1996). Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 722–733. Liu, F., & Picard, R. W. (1996). Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 722–733.
go back to reference Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. Journal of Optical Society of America A, 7, 923–932. Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. Journal of Optical Society of America A, 7, 923–932.
go back to reference Mao, J., & Jain, A. K. (1992). Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25, 173–188. Mao, J., & Jain, A. K. (1992). Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25, 173–188.
go back to reference Mayhew, J. E. W., & Frisby, J. P. (1978). Suprathreshold contrast perception and complex random textures. Vision Resarch, 18, 895–897. Mayhew, J. E. W., & Frisby, J. P. (1978). Suprathreshold contrast perception and complex random textures. Vision Resarch, 18, 895–897.
go back to reference Mosteller, F. (1951). Remarks on the method of paired comparisons: III. A test of significance for paired comparisons when equal standard deviations and equal correlations are assumed. Psychometrica, 16, 207–218. Mosteller, F. (1951). Remarks on the method of paired comparisons: III. A test of significance for paired comparisons when equal standard deviations and equal correlations are assumed. Psychometrica, 16, 207–218.
go back to reference Portilla, J., & Simoncelli, E.P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40, 49–71. Portilla, J., & Simoncelli, E.P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40, 49–71.
go back to reference Rao, A. R., & Lohse, G. L. (1996). Towards a texture naming system: Identifying relevant dimensions of texture. Vision Research, 36, 1649–1669. Rao, A. R., & Lohse, G. L. (1996). Towards a texture naming system: Identifying relevant dimensions of texture. Vision Research, 36, 1649–1669.
go back to reference Sakai, K., & Finkel, L. H. (1995). Characterization of the spatial-frequency spectrum in the perception of shape from texture. Journal of Optical Society of America, 12, 1208–1224. Sakai, K., & Finkel, L. H. (1995). Characterization of the spatial-frequency spectrum in the perception of shape from texture. Journal of Optical Society of America, 12, 1208–1224.
go back to reference Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions Systems, Man and Cybernetics, SMC-8, 460–472. Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions Systems, Man and Cybernetics, SMC-8, 460–472.
go back to reference Thurstone, L. L. (1927). A law of comparative judgment, Psychological Review, 34, 273–289. Thurstone, L. L. (1927). A law of comparative judgment, Psychological Review, 34, 273–289.
go back to reference Tiippana, K., & Näsänen, R. (1999). Spatial-frequency bandwidth of perceived contrast. Vision Research, 39, 3399–3403. Tiippana, K., & Näsänen, R. (1999). Spatial-frequency bandwidth of perceived contrast. Vision Research, 39, 3399–3403.
go back to reference Turner, M. R. (1986). Texture discrimination by gabor functions. Biological Cybernetics, 55, 71–82. Turner, M. R. (1986). Texture discrimination by gabor functions. Biological Cybernetics, 55, 71–82.
go back to reference Uttal, W. R. (1975). An autocorrelation theory of form detection. Hillsdale, NJ: Erlbaum. Uttal, W. R. (1975). An autocorrelation theory of form detection. Hillsdale, NJ: Erlbaum.
go back to reference Zhu, S. C., Wu, Y. N., & Mumford, D. (1998). Filters, Random fields And Maximum Entropy (FRAME) – Towards a Unified Theory for Texture Modeling. International Journal of Computer Vision, 27, 1–20. Zhu, S. C., Wu, Y. N., & Mumford, D. (1998). Filters, Random fields And Maximum Entropy (FRAME) – Towards a Unified Theory for Texture Modeling. International Journal of Computer Vision, 27, 1–20.
Metagegevens
Titel
Textural properties corresponding to visual perception based on the correlation mechanism in the visual system
Auteurs
Kenji Fujii
Shinofu Sugi
Yoichi Ando
Publicatiedatum
01-08-2003
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 3/2003
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-002-0113-6

Andere artikelen Uitgave 3/2003

Psychological Research 3/2003 Naar de uitgave