Skip to main content
Top
Gepubliceerd in:

25-03-2019 | Original Article

Test of a dynamic neural field model: spatial working memory is biased away from distractors

Auteurs: Anne R. Schutte, Gregory J. DeGirolamo

Gepubliceerd in: Psychological Research | Uitgave 6/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Attention facilitates the encoding (e.g., Awh, Anllo-Vento, & Hillyard, J Cognit Neurosci 12(5), 840–847, 2000) and maintenance of locations in spatial working memory (Awh, Vogel, & Oh, Atten, Percept Psychophys 78(4), 1043–1063, 2006). When individuals shift their attention during the maintenance period of a spatial working memory task, their memory of a target location tends to be biased in the direction of the attentional shift (Johnson & Spencer, 2016). Dynamic field theory predicts that in certain conditions, inhibitory mechanisms will result in biases away from distractors presented during the maintenance period of the task. Specifically, dynamic field theory predicts that memory responses will be biased toward distractors that are near the target location and biased away from distractors that are farther from the target location. In two experiments, the current study tested adults in a spatial memory task that required memorization of a single target location. On a subset of trials, a distractor appeared during the memory delay at different distances and directions from the target location. In contrast to the prediction, memory responses were biased away from distractors that were near the target location and not biased by distractors that were far from the target location, providing challenges for, dynamic field theory and other theories of spatial working memory.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Amari, S. (1989). Dynamical stability of formation of cortical maps. In M. A. Arbib & S. Amari (Eds.), Dynamic interactions in neural networks: Models and data. Research Notes in neural computing (1st edn., pp. 15–34). New York: Springer.CrossRef Amari, S. (1989). Dynamical stability of formation of cortical maps. In M. A. Arbib & S. Amari (Eds.), Dynamic interactions in neural networks: Models and data. Research Notes in neural computing (1st edn., pp. 15–34). New York: Springer.CrossRef
go back to reference Amari, S., & Arbib, M. A. (1977). Competition and cooperation in neural nets. In J. Metzler (Ed.), Systems neuroscience (1st edn., pp. 119–165). New York: Academic Press. Amari, S., & Arbib, M. A. (1977). Competition and cooperation in neural nets. In J. Metzler (Ed.), Systems neuroscience (1st edn., pp. 119–165). New York: Academic Press.
go back to reference Samuelson, L. K., & Faubel, C. (2016). Grounding word learning in space and time. In G. Schöner & J. Spencer (Eds.), & the DFT research group (Ed.), Dynamic thinking: A primer on dynamic field theory (pp. 297–325). New York: Oxford University Press. Samuelson, L. K., & Faubel, C. (2016). Grounding word learning in space and time. In G. Schöner & J. Spencer (Eds.), & the DFT research group (Ed.), Dynamic thinking: A primer on dynamic field theory (pp. 297–325). New York: Oxford University Press.
go back to reference Schneegans, S., Spencer, J. P., & Schöner, G. (2016). Integrating “what” and “where”: Visual working memory for objects in a scene. In G. Schöner & J. Spencer (Eds.), & the DFT Research Group (Ed.), Dynamic thinking: A primer on dynamic field theory (pp. 297–325). New York: Oxford University Press. Schneegans, S., Spencer, J. P., & Schöner, G. (2016). Integrating “what” and “where”: Visual working memory for objects in a scene. In G. Schöner & J. Spencer (Eds.), & the DFT Research Group (Ed.), Dynamic thinking: A primer on dynamic field theory (pp. 297–325). New York: Oxford University Press.
go back to reference Schöner, G., Spencer, J. P., & the DFT Research Group (2016). Dynamic Thinking: A Primer on Dynamic Field Theory. New York: Oxford University Press. Schöner, G., Spencer, J. P., & the DFT Research Group (2016). Dynamic Thinking: A Primer on Dynamic Field Theory. New York: Oxford University Press.
go back to reference Schutte, A. R., & Spencer, J. P. (2009). Tests of the dynamic field theory and the spatial precision hypothesis: Capturing a qualitative developmental transition in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 35, 1698–1725. https://doi.org/10.1037/a0015794.CrossRefPubMed Schutte, A. R., & Spencer, J. P. (2009). Tests of the dynamic field theory and the spatial precision hypothesis: Capturing a qualitative developmental transition in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 35, 1698–1725. https://​doi.​org/​10.​1037/​a0015794.CrossRefPubMed
go back to reference Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 105–124). Cambridge: MIT Press. Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 105–124). Cambridge: MIT Press.
Metagegevens
Titel
Test of a dynamic neural field model: spatial working memory is biased away from distractors
Auteurs
Anne R. Schutte
Gregory J. DeGirolamo
Publicatiedatum
25-03-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01166-6

Andere artikelen Uitgave 6/2020

Psychological Research 6/2020 Naar de uitgave