Skip to main content
Top
Gepubliceerd in:

07-10-2017 | Original Paper

Temporal Processing Instability with Millisecond Accuracy is a Cardinal Feature of Sensorimotor Impairments in Autism Spectrum Disorder: Analysis Using the Synchronized Finger-Tapping Task

Auteurs: Chie Morimoto, Eisuke Hida, Keisuke Shima, Hitoshi Okamura

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 2/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD showed more variability in temporal processing parameters than TD individuals. In addition, temporal processing instability was related to altered motor performance. Further, receiver operating characteristic (ROC) curve analyses indicated that altered temporal processing can be useful for distinguishing between individuals with and without ASD. These results suggest that instability of temporal processing with millisecond accuracy is a fundamental feature of sensorimotor impairments in ASD.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. The Cerebellum, 6, 202–213.CrossRefPubMed Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. The Cerebellum, 6, 202–213.CrossRefPubMed
go back to reference Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. The American Journal of Psychiatry, 160, 262–273.CrossRefPubMed Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. The American Journal of Psychiatry, 160, 262–273.CrossRefPubMed
go back to reference Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Pub.CrossRef Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Pub.CrossRef
go back to reference Bauman, M. L., & Kemper, T. L. (1994). Neuroanatomic observations of the brain in autism. The Neurobiology of Autism, 612, 119–145. Bauman, M. L., & Kemper, T. L. (1994). Neuroanatomic observations of the brain in autism. The Neurobiology of Autism, 612, 119–145.
go back to reference Bölte, S., & Poustka, F. (2002). The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiatry and Human Development, 33, 165–172.CrossRefPubMed Bölte, S., & Poustka, F. (2002). The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiatry and Human Development, 33, 165–172.CrossRefPubMed
go back to reference Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80, 807–815.CrossRefPubMed Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80, 807–815.CrossRefPubMed
go back to reference Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medicine, 41, 619–627.CrossRefPubMed Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medicine, 41, 619–627.CrossRefPubMed
go back to reference Chivate, R., Thakrar, P., Narang, J., Patkar, D., Kumar, S., Verma, M. PET/CT in Autism: A Diagnostic Tool. In Radiological Society of North America 2014 Scientific Assembly and Annual Meeting-Chicago IL, 2014. Chivate, R., Thakrar, P., Narang, J., Patkar, D., Kumar, S., Verma, M. PET/CT in Autism: A Diagnostic Tool. In Radiological Society of North America 2014 Scientific Assembly and Annual Meeting-Chicago IL, 2014.
go back to reference Courchesne, E., Saitoh, O., Townsend, J., Yeung-Courchesne, R., Press, G., Lincoln, A., et al. (1994). Cerebellar hypoplasia and hyperplasia in infantile autism. Lancet, 343, 63–64.CrossRefPubMed Courchesne, E., Saitoh, O., Townsend, J., Yeung-Courchesne, R., Press, G., Lincoln, A., et al. (1994). Cerebellar hypoplasia and hyperplasia in infantile autism. Lancet, 343, 63–64.CrossRefPubMed
go back to reference De Bildt, A., Sytema, S., Kraijer, D., & Minderaa, R. (2005). Prevalence of pervasive developmental disorders in children and adolescents with mental retardation. Journal of Child Psychology and Psychiatry, 46, 275–286.CrossRefPubMed De Bildt, A., Sytema, S., Kraijer, D., & Minderaa, R. (2005). Prevalence of pervasive developmental disorders in children and adolescents with mental retardation. Journal of Child Psychology and Psychiatry, 46, 275–286.CrossRefPubMed
go back to reference Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.CrossRefPubMed Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.CrossRefPubMed
go back to reference Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40, 1227–1240.CrossRefPubMed Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40, 1227–1240.CrossRefPubMed
go back to reference Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control-Champaign, 10, 244.CrossRef Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control-Champaign, 10, 244.CrossRef
go back to reference Green, D., Baird, G., Barnett, A. L., Henderson, L., Huber, J., & Henderson, S. E. (2002). The severity and nature of motor impairment in Asperger’s syndrome: A comparison with specific developmental disorder of motor function. Journal of Child Psychology and Psychiatry, 43, 655–668.CrossRefPubMed Green, D., Baird, G., Barnett, A. L., Henderson, L., Huber, J., & Henderson, S. E. (2002). The severity and nature of motor impairment in Asperger’s syndrome: A comparison with specific developmental disorder of motor function. Journal of Child Psychology and Psychiatry, 43, 655–668.CrossRefPubMed
go back to reference Hessl, D., Nguyen, D. V., Green, C., Chavez, A., Tassone, F., Hagerman, R. J., et al. (2009). A solution to limitations of cognitive testing in children with intellectual disabilities: The case of fragile X syndrome. Journal of Neurodevelopmental Disorders, 1, 33–45. doi:10.1007/s11689-008-9001-8.CrossRefPubMed Hessl, D., Nguyen, D. V., Green, C., Chavez, A., Tassone, F., Hagerman, R. J., et al. (2009). A solution to limitations of cognitive testing in children with intellectual disabilities: The case of fragile X syndrome. Journal of Neurodevelopmental Disorders, 1, 33–45. doi:10.​1007/​s11689-008-9001-8.CrossRefPubMed
go back to reference Hoppenbrouwers, S. S., Schutter, D. J., Fitzgerald, P. B., Chen, R., & Daskalakis, Z. J. (2008). The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: A review. Brain Research Reviews, 59, 185–200.CrossRefPubMed Hoppenbrouwers, S. S., Schutter, D. J., Fitzgerald, P. B., Chen, R., & Daskalakis, Z. J. (2008). The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: A review. Brain Research Reviews, 59, 185–200.CrossRefPubMed
go back to reference Ivry, R. B., Keele, S., & Diener, H. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 73, 167–180.CrossRefPubMed Ivry, R. B., Keele, S., & Diener, H. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 73, 167–180.CrossRefPubMed
go back to reference Ivry, R. B., & Spencer, R. M. (2004). The neural representation of time. Current Opinion in Neurobiology, 14, 225–232.CrossRefPubMed Ivry, R. B., & Spencer, R. M. (2004). The neural representation of time. Current Opinion in Neurobiology, 14, 225–232.CrossRefPubMed
go back to reference Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology. 57, 645–652.CrossRefPubMed Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology. 57, 645–652.CrossRefPubMed
go back to reference La Malfa, G., Lassi, S., Bertelli, M., Salvini, R., & Placidi, G. (2004). Autism and intellectual disability: A study of prevalence on a sample of the Italian population. Journal of Intellectual Disability Research, 48, 262–267.CrossRefPubMed La Malfa, G., Lassi, S., Bertelli, M., Salvini, R., & Placidi, G. (2004). Autism and intellectual disability: A study of prevalence on a sample of the Italian population. Journal of Intellectual Disability Research, 48, 262–267.CrossRefPubMed
go back to reference Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250–255.CrossRefPubMed Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250–255.CrossRefPubMed
go back to reference Martin, R., Tigera, C., Denckla, M. B., E. MARK MAHONE (2010). Factor structure of paediatric timed motor examination and its relationship with IQ. Developmental medicine and child neurology 52. Martin, R., Tigera, C., Denckla, M. B., E. MARK MAHONE (2010). Factor structure of paediatric timed motor examination and its relationship with IQ. Developmental medicine and child neurology 52.
go back to reference Maschke, M., Gomez, C. M., Ebner, T. J., & Konczak, J. (2004). Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. Journal of neurophysiology, 91, 230–238.CrossRefPubMed Maschke, M., Gomez, C. M., Ebner, T. J., & Konczak, J. (2004). Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. Journal of neurophysiology, 91, 230–238.CrossRefPubMed
go back to reference Mates, J. (1994). A model of synchronization of motor acts to a stimulus sequence. Biological cybernetics, 70, 463–473.CrossRefPubMed Mates, J. (1994). A model of synchronization of motor acts to a stimulus sequence. Biological cybernetics, 70, 463–473.CrossRefPubMed
go back to reference Matson, J. L., Dempsey, T., & Fodstad, J. C. (2009). The effect of Autism Spectrum Disorders on adaptive independent living skills in adults with severe intellectual disability. Research in developmental disabilities, 30, 1203–1211. doi:10.1016/j.ridd.2009.04.001.CrossRefPubMed Matson, J. L., Dempsey, T., & Fodstad, J. C. (2009). The effect of Autism Spectrum Disorders on adaptive independent living skills in adults with severe intellectual disability. Research in developmental disabilities, 30, 1203–1211. doi:10.​1016/​j.​ridd.​2009.​04.​001.CrossRefPubMed
go back to reference Mauk, M., Medina, J., Nores, W., & Ohyama, T. (2000). Cerebellar function: coordination, learning or timing? Current biology: CB, 10, R522-R525.CrossRef Mauk, M., Medina, J., Nores, W., & Ohyama, T. (2000). Cerebellar function: coordination, learning or timing? Current biology: CB, 10, R522-R525.CrossRef
go back to reference Medina, J. F. (2011). The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Current opinion in neurobiology, 21, 616–622.CrossRefPubMedPubMedCentral Medina, J. F. (2011). The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Current opinion in neurobiology, 21, 616–622.CrossRefPubMedPubMedCentral
go back to reference Mosconi, M. W., Mohanty, S., Greene, R. K., Cook, E. H., Vaillancourt, D. E., & Sweeney, J. A. (2015). Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. The Journal of neuroscience: the official journal of the Society for Neuroscience 35. Mosconi, M. W., Mohanty, S., Greene, R. K., Cook, E. H., Vaillancourt, D. E., & Sweeney, J. A. (2015). Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. The Journal of neuroscience: the official journal of the Society for Neuroscience 35.
go back to reference Müller, F., & Dichgans, J. (1994). Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 101, 485–492.CrossRefPubMed Müller, F., & Dichgans, J. (1994). Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 101, 485–492.CrossRefPubMed
go back to reference Nazarali, N., Glazebrook, C. M., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39, 1401–1411.CrossRefPubMed Nazarali, N., Glazebrook, C. M., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39, 1401–1411.CrossRefPubMed
go back to reference Ohmae, S., Uematsu, A., & Tanaka, M. (2013). Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. The Journal of Neuroscience, 33, 15432–15441.CrossRefPubMed Ohmae, S., Uematsu, A., & Tanaka, M. (2013). Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. The Journal of Neuroscience, 33, 15432–15441.CrossRefPubMed
go back to reference Ozonoff, S., Young, G. S., Goldring, S., Greiss-Hess, L., Herrera, A. M., Steele, J., et al. (2008). Gross motor development, movement abnormalities, and early identification of autism. Journal of Autism and Developmental Disorders, 38, 644–656.CrossRefPubMed Ozonoff, S., Young, G. S., Goldring, S., Greiss-Hess, L., Herrera, A. M., Steele, J., et al. (2008). Gross motor development, movement abnormalities, and early identification of autism. Journal of Autism and Developmental Disorders, 38, 644–656.CrossRefPubMed
go back to reference Ozonoff, S., Rogers, S. J., Farnham, J. M., & Pennington, B. F. (1993). Can standard measures identify subclinical markers of autism?. Journal of autism and developmental disorders, 23, 429–441.CrossRefPubMed Ozonoff, S., Rogers, S. J., Farnham, J. M., & Pennington, B. F. (1993). Can standard measures identify subclinical markers of autism?. Journal of autism and developmental disorders, 23, 429–441.CrossRefPubMed
go back to reference Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine, 27, 157–172.CrossRefPubMed Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine, 27, 157–172.CrossRefPubMed
go back to reference Penhune, V. B., Zattore, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10, 752–765.CrossRefPubMed Penhune, V. B., Zattore, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10, 752–765.CrossRefPubMed
go back to reference Postorino, V., et al. (2016). Intellectual disability in Autism Spectrum Disorder: Investigation of prevalence in an Italian sample of children and adolescents. Research in Developmental Disabilities, 48, 193–201.CrossRefPubMed Postorino, V., et al. (2016). Intellectual disability in Autism Spectrum Disorder: Investigation of prevalence in an Italian sample of children and adolescents. Research in Developmental Disabilities, 48, 193–201.CrossRefPubMed
go back to reference Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37, 321–328.CrossRefPubMed Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37, 321–328.CrossRefPubMed
go back to reference Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., & Binder, J. R. (1997). Distributed neural systems underlying the timing of movements. The Journal of Neuroscience, 17, 5528–5535.PubMed Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., & Binder, J. R. (1997). Distributed neural systems underlying the timing of movements. The Journal of Neuroscience, 17, 5528–5535.PubMed
go back to reference Raymond, J. L., Lisberger, S. G., & Mauk, M. D. (1996). The cerebellum: A neuronal learning machine? Science, 272, 1126–1131.CrossRefPubMed Raymond, J. L., Lisberger, S. G., & Mauk, M. D. (1996). The cerebellum: A neuronal learning machine? Science, 272, 1126–1131.CrossRefPubMed
go back to reference Rinehart, N. J., et al. (2006). Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Developmental Medicine and Child Neurology, 48, 819–824.CrossRefPubMed Rinehart, N. J., et al. (2006). Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Developmental Medicine and Child Neurology, 48, 819–824.CrossRefPubMed
go back to reference Sano, Y., et al. (2016). Quantifying Parkinson’s disease finger-tapping severity by extracting and synthesizing finger motion properties. Medical & Biological Engineering & Computing, 54, 953–965.CrossRef Sano, Y., et al. (2016). Quantifying Parkinson’s disease finger-tapping severity by extracting and synthesizing finger motion properties. Medical & Biological Engineering & Computing, 54, 953–965.CrossRef
go back to reference Schwartze, M., Keller, P. E., & Kotz, S. A. (2016). Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behavioural Brain Research, 312, 285–293.CrossRefPubMed Schwartze, M., Keller, P. E., & Kotz, S. A. (2016). Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behavioural Brain Research, 312, 285–293.CrossRefPubMed
go back to reference Serrien, D. J., & Wiesendanger, M. (1999). Grip-load force coordination in cerebellar patients. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 128, 76–80.CrossRefPubMed Serrien, D. J., & Wiesendanger, M. (1999). Grip-load force coordination in cerebellar patients. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 128, 76–80.CrossRefPubMed
go back to reference Shima, K., Tsuji, T., Kandori, A., Yokoe, M., & Sakoda, S. (2009). Measurement and evaluation of finger tapping movements using log-linearized Gaussian mixture networks. Sensors, 9, 2187–2201.CrossRefPubMedPubMedCentral Shima, K., Tsuji, T., Kandori, A., Yokoe, M., & Sakoda, S. (2009). Measurement and evaluation of finger tapping movements using log-linearized Gaussian mixture networks. Sensors, 9, 2187–2201.CrossRefPubMedPubMedCentral
go back to reference Stanley-Cary, C., Rinehart, N., Tonge, B., White, O., & Fielding, J. (2011). Greater disruption to control of voluntary saccades in autistic disorder than Asperger’s disorder: evidence for greater cerebellar involvement in autism? Cerebellum, 10, 70–80. doi:10.1007/s12311-010-0229-y.CrossRefPubMed Stanley-Cary, C., Rinehart, N., Tonge, B., White, O., & Fielding, J. (2011). Greater disruption to control of voluntary saccades in autistic disorder than Asperger’s disorder: evidence for greater cerebellar involvement in autism? Cerebellum, 10, 70–80. doi:10.​1007/​s12311-010-0229-y.CrossRefPubMed
go back to reference Takarae, Y., Minshew, N., Luna, B., & Sweeney, J. (2004a). Oculomotor abnormalities parallel cerebellar histopathology in autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 1359–1361.CrossRefPubMedPubMedCentral Takarae, Y., Minshew, N., Luna, B., & Sweeney, J. (2004a). Oculomotor abnormalities parallel cerebellar histopathology in autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 1359–1361.CrossRefPubMedPubMedCentral
go back to reference Thaut, M. H., & Kenyon, G. P. (2003). Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Human Movement Science, 22, 321–338.CrossRefPubMed Thaut, M. H., & Kenyon, G. P. (2003). Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Human Movement Science, 22, 321–338.CrossRefPubMed
go back to reference Thaut, M. H., Miller, R. A., & Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: Phase vs period correction. Biological Cybernetics, 79, 241–250.CrossRefPubMed Thaut, M. H., Miller, R. A., & Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: Phase vs period correction. Biological Cybernetics, 79, 241–250.CrossRefPubMed
go back to reference Théoret, H., Haque, J., & Pascual-Leone, A. (2001). Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neuroscience Letters, 306, 29–32.CrossRefPubMed Théoret, H., Haque, J., & Pascual-Leone, A. (2001). Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neuroscience Letters, 306, 29–32.CrossRefPubMed
go back to reference van der Fels, I. M., te Wierike, S. C., Hartman, E., Elferink-Gemser, M. T., Smith, J., & Visscher, C. (2015). The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. Journal of Science and Medicine in Sport/Sports Medicine Australia, 18, 697–703.CrossRef van der Fels, I. M., te Wierike, S. C., Hartman, E., Elferink-Gemser, M. T., Smith, J., & Visscher, C. (2015). The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. Journal of Science and Medicine in Sport/Sports Medicine Australia, 18, 697–703.CrossRef
go back to reference Vernazza-Martin, S., et al. (2005). Goal directed locomotion and balance control in autistic children. Journal of Autism and Developmental Disorders, 35, 91–102.CrossRefPubMed Vernazza-Martin, S., et al. (2005). Goal directed locomotion and balance control in autistic children. Journal of Autism and Developmental Disorders, 35, 91–102.CrossRefPubMed
go back to reference Wang, Z., Magnon, G. C., White, S. P., Greene, R. K., Vaillancourt, D. E., & Mosconi, M. W. (2015). Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping. Journal of Neurophysiology, 113, 1989–2001.CrossRefPubMed Wang, Z., Magnon, G. C., White, S. P., Greene, R. K., Vaillancourt, D. E., & Mosconi, M. W. (2015). Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping. Journal of Neurophysiology, 113, 1989–2001.CrossRefPubMed
go back to reference Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.CrossRef Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.CrossRef
go back to reference Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338–347.CrossRefPubMed Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338–347.CrossRefPubMed
Metagegevens
Titel
Temporal Processing Instability with Millisecond Accuracy is a Cardinal Feature of Sensorimotor Impairments in Autism Spectrum Disorder: Analysis Using the Synchronized Finger-Tapping Task
Auteurs
Chie Morimoto
Eisuke Hida
Keisuke Shima
Hitoshi Okamura
Publicatiedatum
07-10-2017
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 2/2018
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-017-3334-7