Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2022

08-01-2022 | Original Article

Temporal integration of feature probability distributions

Auteurs: Sabrina Hansmann-Roth, Sóley Þorsteinsdóttir, Joy J. Geng, Árni Kristjánsson

Gepubliceerd in: Psychological Research | Uitgave 6/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Humans are surprisingly good at learning the statistical characteristics of their visual environment. Recent studies have revealed that not only can the visual system learn repeated features of visual search distractors, but also their actual probability distributions. Search times were determined by the frequency of distractor features over consecutive search trials. The search displays applied in these studies involved many exemplars of distractors on each trial and while there is clear evidence that feature distributions can be learned from large distractor sets, it is less clear if distributions are well learned for single targets presented on each trial. Here, we investigated potential learning of probability distributions of single targets during visual search. Over blocks of trials, observers searched for an oddly colored target that was drawn from either a Gaussian or a uniform distribution. Search times for the different target colors were clearly influenced by the probability of that feature within trial blocks. The same search targets, coming from the extremes of the two distributions were found significantly slower during the blocks where the targets were drawn from a Gaussian distribution than from a uniform distribution indicating that observers were sensitive to the target probability determined by the distribution shape. In Experiment 2, we replicated the effect using binned distributions and revealed the limitations of encoding complex target distributions. Our results demonstrate detailed internal representations of target feature distributions and that the visual system integrates probability distributions of target colors over surprisingly long trial sequences.
Literatuur
go back to reference Acerbi, L., Wolpert, D. M., & Vijayakumar, S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology, 8(11), 1–19.CrossRef Acerbi, L., Wolpert, D. M., & Vijayakumar, S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology, 8(11), 1–19.CrossRef
go back to reference Ásgeirsson, Á. G., Kristjánsson, Á., & Bundesen, C. (2014). Independent priming of location and color in identification of briefly presented letters. Attention, Perception and Psychophysics, 76, 40–48.PubMedCrossRef Ásgeirsson, Á. G., Kristjánsson, Á., & Bundesen, C. (2014). Independent priming of location and color in identification of briefly presented letters. Attention, Perception and Psychophysics, 76, 40–48.PubMedCrossRef
go back to reference Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 10 433–436 Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 10 433–436
go back to reference Chen, J., Leber, A. B., & Golomb, J. D. (2019). Attentional capture alters feature perception. Journal of Experimental Psychology: Human Perception and Performance, 45(11), 1443.PubMed Chen, J., Leber, A. B., & Golomb, J. D. (2019). Attentional capture alters feature perception. Journal of Experimental Psychology: Human Perception and Performance, 45(11), 1443.PubMed
go back to reference Chetverikov, A., Campana, G., & Kristjansson, A. (2020). Probabilistic rejection templates in visual working memory. Cognition, 196, 104075 Chetverikov, A., Campana, G., & Kristjansson, A. (2020). Probabilistic rejection templates in visual working memory. Cognition, 196, 104075
go back to reference Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196–210.PubMedCrossRef Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196–210.PubMedCrossRef
go back to reference Chetverikov, A., Hansmann-Roth, S., Tanrikulu, O. D., & Kristjánsson, Á. (2019). Feature distribution learning (FDL): a new method to study visual ensembles with priming of attention shifts. In S. Pollman (Ed.), Spatial learning and attention guidance. Neuromethods. New York: Springer Nature. Chetverikov, A., Hansmann-Roth, S., Tanrikulu, O. D., & Kristjánsson, Á. (2019). Feature distribution learning (FDL): a new method to study visual ensembles with priming of attention shifts. In S. Pollman (Ed.), Spatial learning and attention guidance. Neuromethods. New York: Springer Nature.
go back to reference Eckstein, M. P., Thomas, J. P., Palmer, J., & Shimozaki, S. S. (2000). A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics, 62, 425–451. https://doi.org/10.3758/BF03212096PubMedCrossRef Eckstein, M. P., Thomas, J. P., Palmer, J., & Shimozaki, S. S. (2000). A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics, 62, 425–451. https://​doi.​org/​10.​3758/​BF03212096PubMedCrossRef
go back to reference Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception and Psychophysics, 67, 1252–1268.PubMedCrossRef Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception and Psychophysics, 67, 1252–1268.PubMedCrossRef
go back to reference Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current opinion in psychology, 29, 119–125 Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current opinion in psychology, 29, 119–125
go back to reference Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993.PubMed Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993.PubMed
go back to reference Geng, J. J., Won, B. Y., & Carlisle, N. B. (2019). Distractor ignoring: Strategies, learning, and passive filtering. Current Directions in Psychological Science, 28(6), 600–606.PubMedPubMedCentralCrossRef Geng, J. J., Won, B. Y., & Carlisle, N. B. (2019). Distractor ignoring: Strategies, learning, and passive filtering. Current Directions in Psychological Science, 28(6), 600–606.PubMedPubMedCentralCrossRef
go back to reference Goolsby, B. A., & Suzuki, S. (2001). Understanding priming of color-singleton search: Roles of attention at encoding and “retrieval.” Perception and Psychophysics, 63(6), 929–944.PubMedCrossRef Goolsby, B. A., & Suzuki, S. (2001). Understanding priming of color-singleton search: Roles of attention at encoding and “retrieval.” Perception and Psychophysics, 63(6), 929–944.PubMedCrossRef
go back to reference Grubert, A., & Eimer, M. (2013). Qualitative differences in the guidance of attention during single-color and multiple-color visual search: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1433. Grubert, A., & Eimer, M. (2013). Qualitative differences in the guidance of attention during single-color and multiple-color visual search: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1433.
go back to reference Hansmann-Roth, S., Kristjánsson, Á., Whitney, D., & Chetverikov, A. (2021). Dissociating implicit and explicit ensemble representations reveals the limits of visual perception and the richness of behavior. Scientific Reports, 11, 3899.PubMedPubMedCentralCrossRef Hansmann-Roth, S., Kristjánsson, Á., Whitney, D., & Chetverikov, A. (2021). Dissociating implicit and explicit ensemble representations reveals the limits of visual perception and the richness of behavior. Scientific Reports, 11, 3899.PubMedPubMedCentralCrossRef
go back to reference Ishihara, S. (2004). Ishihara’s tests for colour deficiency. Tokyo, Japan: Kanehara Trading Inc Ishihara, S. (2004). Ishihara’s tests for colour deficiency. Tokyo, Japan: Kanehara Trading Inc
go back to reference Kim, B., & Basso, M. A. (2008). Saccade target selection in the superior colliculus: A signal detection theory approach. The Journal of Neuroscience, 28, 2991–3007.PubMedPubMedCentralCrossRef Kim, B., & Basso, M. A. (2008). Saccade target selection in the superior colliculus: A signal detection theory approach. The Journal of Neuroscience, 28, 2991–3007.PubMedPubMedCentralCrossRef
go back to reference Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12), 712–719.PubMedCrossRef Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12), 712–719.PubMedCrossRef
go back to reference Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.PubMedCrossRef Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.PubMedCrossRef
go back to reference Kristjánsson, Á., & Ásgeirsson, Á. G. (2019). Attentional priming: Recent insights and current controversies. Current Opinion in Psychology, 29, 71–75.PubMedCrossRef Kristjánsson, Á., & Ásgeirsson, Á. G. (2019). Attentional priming: Recent insights and current controversies. Current Opinion in Psychology, 29, 71–75.PubMedCrossRef
go back to reference Kristjánsson, Á., & Driver, J. (2005). Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Research, 48(10), 1217–1232.CrossRef Kristjánsson, Á., & Driver, J. (2005). Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Research, 48(10), 1217–1232.CrossRef
go back to reference Kristjánsson, Á., Sigurjónsdóttir, Ó., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, and Psychophysics, 72(5), 1229–1236.CrossRef Kristjánsson, Á., Sigurjónsdóttir, Ó., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, and Psychophysics, 72(5), 1229–1236.CrossRef
go back to reference Lawrence, M. A. (2016). Easy analysis and visualization of factorial experiments. R package version 4.4. Lawrence, M. A. (2016). Easy analysis and visualization of factorial experiments. R package version 4.4.
go back to reference Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4–4.PubMedCrossRef Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4–4.PubMedCrossRef
go back to reference Maljkovic, V., & Nakayama, K. (1994). The priming of pop-out: I Role of Features. Memory and Cognition, 22, 657–672.PubMedCrossRef Maljkovic, V., & Nakayama, K. (1994). The priming of pop-out: I Role of Features. Memory and Cognition, 22, 657–672.PubMedCrossRef
go back to reference Maljkovic, V., & Nakayama, K. E. N. (1996). Priming of pop-out: II. The role of position. Perception and Psychophysics, 58(7), 977–991.PubMedCrossRef Maljkovic, V., & Nakayama, K. E. N. (1996). Priming of pop-out: II. The role of position. Perception and Psychophysics, 58(7), 977–991.PubMedCrossRef
go back to reference Martini, P. (2010). System identification in priming of pop-out. Vision Research, 50(21), 2110–2115.PubMedCrossRef Martini, P. (2010). System identification in priming of pop-out. Vision Research, 50(21), 2110–2115.PubMedCrossRef
go back to reference Michael, E., de Gardelle, V., & Summerfield, C. (2014). Priming by the variability of visual information. Proceedings of the National Academy of Sciences, 111(21), 7873–7878.CrossRef Michael, E., de Gardelle, V., & Summerfield, C. (2014). Priming by the variability of visual information. Proceedings of the National Academy of Sciences, 111(21), 7873–7878.CrossRef
go back to reference Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.CrossRef Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.CrossRef
go back to reference Sanborn, A. N., & Beierholm, U. R. (2016). Fast and accurate learning when making discrete numerical estimates. PLoS computational biology, 12(4), e1004859 Sanborn, A. N., & Beierholm, U. R. (2016). Fast and accurate learning when making discrete numerical estimates. PLoS computational biology, 12(4), e1004859
go back to reference Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62(10), 1904–1914.PubMedCrossRef Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62(10), 1904–1914.PubMedCrossRef
go back to reference Sigurdardottir, H. M., Kristjánsson, Á., & Driver, J. (2007). Repetition streaks increase perceptual sensitivity in visual search of brief displays. Visual Cognition, 16(5), 643–658.CrossRef Sigurdardottir, H. M., Kristjánsson, Á., & Driver, J. (2007). Repetition streaks increase perceptual sensitivity in visual search of brief displays. Visual Cognition, 16(5), 643–658.CrossRef
go back to reference Tanrıkulu, Ö. D., Chetverikov, A., & Kristjánsson, Á. (2020). Encoding perceptual ensembles during visual search in peripheral vision. Journal of Vision, 20, 1–18.CrossRef Tanrıkulu, Ö. D., Chetverikov, A., & Kristjánsson, Á. (2020). Encoding perceptual ensembles during visual search in peripheral vision. Journal of Vision, 20, 1–18.CrossRef
go back to reference Tanrıkulu, Ö. D., Chetverikov, A., & Kristjansson, A. (2021). Testing temporal integration of feature probability distributions using role-reversal effects in visual search. Vision Research, 188, 211–226.PubMedCrossRef Tanrıkulu, Ö. D., Chetverikov, A., & Kristjansson, A. (2021). Testing temporal integration of feature probability distributions using role-reversal effects in visual search. Vision Research, 188, 211–226.PubMedCrossRef
go back to reference Thompson, D. R., & Milliken, B. (2012). Perceptual distinctiveness produces long-lasting priming of pop-out. Psychonomic bulletin & review, 19(2), 170–176 Thompson, D. R., & Milliken, B. (2012). Perceptual distinctiveness produces long-lasting priming of pop-out. Psychonomic bulletin & review, 19(2), 170–176
go back to reference Töllner, T., Conci, M., & Müller, H. J. (2015). Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping, 36(3), 935–944.PubMedCrossRef Töllner, T., Conci, M., & Müller, H. J. (2015). Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping, 36(3), 935–944.PubMedCrossRef
go back to reference Tran, R. V., & E & Pashler, H. (2017). How effective is incidental learning of the shape of probability distributions? Royal Society Open Science, 4(8), 1–9.CrossRef Tran, R. V., & E & Pashler, H. (2017). How effective is incidental learning of the shape of probability distributions? Royal Society Open Science, 4(8), 1–9.CrossRef
go back to reference Treue, S., & Trujillo, J. C. M. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.PubMedCrossRef Treue, S., & Trujillo, J. C. M. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.PubMedCrossRef
go back to reference Turatto, M., Bonetti, F., Pascucci, D., & Chelazzi, L. (2018). Desensitizing the attention system to distraction while idling: A new latent learning phenomenon in the visual attention domain. Journal of Experimental Psychology: General, 147(12), 1827–1850. https://doi.org/10.1037/xge0000503CrossRef Turatto, M., Bonetti, F., Pascucci, D., & Chelazzi, L. (2018). Desensitizing the attention system to distraction while idling: A new latent learning phenomenon in the visual attention domain. Journal of Experimental Psychology: General, 147(12), 1827–1850. https://​doi.​org/​10.​1037/​xge0000503CrossRef
go back to reference Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic bulletin & review, 19(5), 871–878 Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic bulletin & review, 19(5), 871–878
go back to reference Witzel, C., & Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 13(7), 1PubMedCrossRef Witzel, C., & Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 13(7), 1PubMedCrossRef
go back to reference Witzel, C., & Gegenfurtner, K. R. (2015). Categorical facilitation with equally discriminable colors. Journal of Vision, 15(8), 22–33.PubMedCrossRef Witzel, C., & Gegenfurtner, K. R. (2015). Categorical facilitation with equally discriminable colors. Journal of Vision, 15(8), 22–33.PubMedCrossRef
go back to reference Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. (2013). Where do we store the memory representations that guide attention?. Journal of vision, 13(3), 1–17 Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. (2013). Where do we store the memory representations that guide attention?. Journal of vision, 13(3), 1–17
go back to reference Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1128–1141PubMed Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1128–1141PubMed
go back to reference Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363.PubMed Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363.PubMed
go back to reference Yashar, A., & Lamy, D. (2010). Intertrial repetition affects perception: The role of focused attention. Journal of Vision, 10(14), 1–8 Yashar, A., & Lamy, D. (2010). Intertrial repetition affects perception: The role of focused attention. Journal of Vision, 10(14), 1–8
go back to reference Yu, X., & Geng, J. J. (2019). The attentional template is shifted and asymmetrically sharpened by distractor context. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 336.PubMed Yu, X., & Geng, J. J. (2019). The attentional template is shifted and asymmetrically sharpened by distractor context. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 336.PubMed
Metagegevens
Titel
Temporal integration of feature probability distributions
Auteurs
Sabrina Hansmann-Roth
Sóley Þorsteinsdóttir
Joy J. Geng
Árni Kristjánsson
Publicatiedatum
08-01-2022
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01621-3

Andere artikelen Uitgave 6/2022

Psychological Research 6/2022 Naar de uitgave