Skip to main content
Top

2020 | OriginalPaper | Hoofdstuk

8 Techniek en toepassing van beeldgestuurde radiotherapie

Auteurs : Dr. ir. M. L. P. Dirkx, MSc S. Quint

Gepubliceerd in: Techniek in de radiotherapie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Inhoud – 1 Inleiding – 2 EPID-beeldvorming – 3 kV-beeldvorming – 4 Beeldkwaliteit – 5 Controle van de positionering met EPID’s en kV-beeldvorming – 6 Onderverdeling van afwijkingen – 7 Correctieprotocollen – 8 Klinische toepassingen CBCT – 9 Overige ontwikkelingen binnen IGRT – In dit hoofdstuk worden de mogelijkheden en de klinische toepassingen van beeldgestuurde radiotherapie (Image Guided Radiotherapy – IGRT) beschreven. Hierbij komen de techniek en de toepassingen van Electronic Portal Imaging Devices (EPID’s), planaire kV-opnamen en cone-beam-CT (CBCT) aan bod. Ook wordt beschreven hoe door de toepassing van positioneringsprotocollen de nauwkeurigheid van patiëntpositionering verbeterd kan worden. Dit hoofdstuk zal inzicht geven in: de wijze waarop de diverse beelden tot stand komen; artefacten die zichtbaar kunnen zijn in de beelden en de oorzaak ervan; het onderscheid tussen systematische en random positioneringsfouten en het effect daarvan op planningsmarges; verkleining van positioneringsfouten door gebruik van offline en online positioneringsprotocollen; voorbeelden van klinische toepassingen van EPID’s, planaire kV-opnamen en CBCT.
Literatuur
1.
go back to reference ICRU Report 83 (2010). Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT). Journal of the International Commission on Radiation Units and Measurements, 10(1), 1–106. ICRU Report 83 (2010). Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT). Journal of the International Commission on Radiation Units and Measurements, 10(1), 1–106.
2.
go back to reference Mutanga, T. F., De Boer, H. C. J., Van der Wielen, G. J., Wentzler, D., Barnhoorn, J., Incrocci, L., et al. (2008). Stereographic targeting in prostate radiotherapy: Speed and precision by daily automatic positioning corrections using kilovoltage/megavoltage image pairs. International Journal of Radiation Oncology, Biology, Physics, 71(4), 1074–1083.CrossRef Mutanga, T. F., De Boer, H. C. J., Van der Wielen, G. J., Wentzler, D., Barnhoorn, J., Incrocci, L., et al. (2008). Stereographic targeting in prostate radiotherapy: Speed and precision by daily automatic positioning corrections using kilovoltage/megavoltage image pairs. International Journal of Radiation Oncology, Biology, Physics, 71(4), 1074–1083.CrossRef
3.
go back to reference Nuyttens, J. J., Prévost, J. B., Praag, J., Hoogeman, M., Van Klaveren, R. J., Levendag, P. C., et al. (2006). Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: Marker placement and early results. Acta Oncologica, 45(7), 961–965.CrossRef Nuyttens, J. J., Prévost, J. B., Praag, J., Hoogeman, M., Van Klaveren, R. J., Levendag, P. C., et al. (2006). Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: Marker placement and early results. Acta Oncologica, 45(7), 961–965.CrossRef
4.
go back to reference De Boer, J. C. J. (2003). Development and application of efficient portal imaging solutions. Proefschrift. Rotterdam: Erasmus Universiteit Rotterdam. De Boer, J. C. J. (2003). Development and application of efficient portal imaging solutions. Proefschrift. Rotterdam: Erasmus Universiteit Rotterdam.
5.
go back to reference Petrie, A., & Sabin, C. (2009). Medical statistics at a glance. New Jersey: John Wiley. Petrie, A., & Sabin, C. (2009). Medical statistics at a glance. New Jersey: John Wiley.
6.
go back to reference Mutanga, T. F., De Boer, H. C. J., Rajan, V., Dirkx, M. L. P., Incrocci, L., & Heijmen, B. J. M. (2012). Day-to-day reproducibility of prostate intrafraction motion assessed by multiple kV and MV imaging of implanted markers during treatment. International Journal of Radiation Oncology, Biology, Physics, 83(1), 400–407.CrossRef Mutanga, T. F., De Boer, H. C. J., Rajan, V., Dirkx, M. L. P., Incrocci, L., & Heijmen, B. J. M. (2012). Day-to-day reproducibility of prostate intrafraction motion assessed by multiple kV and MV imaging of implanted markers during treatment. International Journal of Radiation Oncology, Biology, Physics, 83(1), 400–407.CrossRef
7.
go back to reference Stroom, J. C., De Boer, J. C. J., Huizenga, H., & Visser, A. G. (1999). Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. International Journal of Radiation Oncology, Biology, Physics, 43(4), 905–919.CrossRef Stroom, J. C., De Boer, J. C. J., Huizenga, H., & Visser, A. G. (1999). Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. International Journal of Radiation Oncology, Biology, Physics, 43(4), 905–919.CrossRef
8.
go back to reference De Boer, J. C. J., & Heijmen, B. J. M. (2001). A protocol for the reduction of systematic patient setup errors with minimal portal imaging workload. International Journal of Radiation Oncology, Biology, Physics, 50(5), 1350–1365.CrossRef De Boer, J. C. J., & Heijmen, B. J. M. (2001). A protocol for the reduction of systematic patient setup errors with minimal portal imaging workload. International Journal of Radiation Oncology, Biology, Physics, 50(5), 1350–1365.CrossRef
9.
go back to reference De Boer, J. C. J., Van Sörnsen de Koste, J. R., Creutzberg, C. L., Visser, A. G., Levendag, P. C., & Heijmen, B. J. M. (2001). Electronic portal image assisted reduction of systematic set-up errors in head and neck irradiation. Radiotherapy & Oncology, 61(3), 299–308.CrossRef De Boer, J. C. J., Van Sörnsen de Koste, J. R., Creutzberg, C. L., Visser, A. G., Levendag, P. C., & Heijmen, B. J. M. (2001). Electronic portal image assisted reduction of systematic set-up errors in head and neck irradiation. Radiotherapy & Oncology, 61(3), 299–308.CrossRef
10.
go back to reference Van Sörnsen de Koste, J. R., De Boer, J. C. J., Schuchhard-Schipper, R. H., Senan, S., & Heijmen, B. J. M. (2003). Procedures for high precision setup verification and correction of lung cancer patients using CT-simulation and digitally reconstructed radiographs (DRR). International Journal of Radiation Oncology, Biology, Physics, 55(3), 804–810.CrossRef Van Sörnsen de Koste, J. R., De Boer, J. C. J., Schuchhard-Schipper, R. H., Senan, S., & Heijmen, B. J. M. (2003). Procedures for high precision setup verification and correction of lung cancer patients using CT-simulation and digitally reconstructed radiographs (DRR). International Journal of Radiation Oncology, Biology, Physics, 55(3), 804–810.CrossRef
11.
go back to reference Van Herk, M., Remeijer, P., Rasch, C., & Lebesque, J. V. (2000). The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 47(4), 1121–1135.CrossRef Van Herk, M., Remeijer, P., Rasch, C., & Lebesque, J. V. (2000). The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 47(4), 1121–1135.CrossRef
12.
go back to reference Bel, A., Van Herk, M., Bartelink, H., & Lebesque, J. V. (1993). A verification procedure to improve patient set-up accuracy using portal images. Radiotherapy & Oncology, 29(2), 253–260.CrossRef Bel, A., Van Herk, M., Bartelink, H., & Lebesque, J. V. (1993). A verification procedure to improve patient set-up accuracy using portal images. Radiotherapy & Oncology, 29(2), 253–260.CrossRef
13.
go back to reference De Boer, J. C. J., & Heijmen, B. J. M. (2002). A new approach to off-line setup corrections: Combining safety with minimum workload. Medical Physics, 29(9), 1998–2012.CrossRef De Boer, J. C. J., & Heijmen, B. J. M. (2002). A new approach to off-line setup corrections: Combining safety with minimum workload. Medical Physics, 29(9), 1998–2012.CrossRef
14.
go back to reference De Boer, J. C. J., Van Os, M. J. H., Jansen, P. P., & Heijmen, B. J. M. (2005). Application of the no action level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. International Journal of Radiation Oncology, Biology, Physics, 61(4), 969–983.CrossRef De Boer, J. C. J., Van Os, M. J. H., Jansen, P. P., & Heijmen, B. J. M. (2005). Application of the no action level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. International Journal of Radiation Oncology, Biology, Physics, 61(4), 969–983.CrossRef
15.
go back to reference De Boer, H. C., & Heijmen, B. J. (2007). eNAL: An extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. International Journal of Radiation Oncology, Biology, Physics, 67(5), 1586–1595.CrossRef De Boer, H. C., & Heijmen, B. J. (2007). eNAL: An extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. International Journal of Radiation Oncology, Biology, Physics, 67(5), 1586–1595.CrossRef
16.
go back to reference Penninkhof, J., Quint, S., Baaijens, M., Heijmen, B., & Dirkx, M. (2012). Practical use of the extended no action level (eNAL) correction protocol for breast cancer patients with implanted surgical clips. International Journal of Radiation Oncology, Biology, Physics, 82(2), 1031–1037.CrossRef Penninkhof, J., Quint, S., Baaijens, M., Heijmen, B., & Dirkx, M. (2012). Practical use of the extended no action level (eNAL) correction protocol for breast cancer patients with implanted surgical clips. International Journal of Radiation Oncology, Biology, Physics, 82(2), 1031–1037.CrossRef
17.
go back to reference Sweeney, R. A., Seubert, B., Stark, S., Homann, V., Müller, G., Flentje, M., et al. (2012). Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors. Radiotherapy & Oncology, 7, 81. Sweeney, R. A., Seubert, B., Stark, S., Homann, V., Müller, G., Flentje, M., et al. (2012). Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors. Radiotherapy & Oncology, 7, 81.
18.
go back to reference Bergom, C., Currey, A., Desai, N., Tai, A., & Strauss, J. B. (2018). Deep inspiration breath hold: Techniques and advantages for cardiac sparing during breast cancer irradiation. Frontiers in Oncology, 8, 87.CrossRef Bergom, C., Currey, A., Desai, N., Tai, A., & Strauss, J. B. (2018). Deep inspiration breath hold: Techniques and advantages for cardiac sparing during breast cancer irradiation. Frontiers in Oncology, 8, 87.CrossRef
19.
go back to reference Taylor, A., & Powell, M. E. B. (2008). An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer. Radiotherapy & Oncology, 88, 250–257.CrossRef Taylor, A., & Powell, M. E. B. (2008). An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer. Radiotherapy & Oncology, 88, 250–257.CrossRef
20.
go back to reference Chan, P., Dinniwell, R., Haider, M. A., et al. (2008). Inter- and intra-fractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: A cinematic-MRI point-of-interest study. International Journal of Radiation Oncology, Biology, Physics, 70(5), 1507–1515.CrossRef Chan, P., Dinniwell, R., Haider, M. A., et al. (2008). Inter- and intra-fractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: A cinematic-MRI point-of-interest study. International Journal of Radiation Oncology, Biology, Physics, 70(5), 1507–1515.CrossRef
21.
go back to reference Ahmad, R., Hoogeman, M. S., Quint, S., Mens, J. W., De Pree, I., & Heijmen, B. J. (2008). Inter-fraction bladder filling variations and time trends for cervical cancer patients assessed with a portable 3-dimensional ultrasound bladder scanner. Radiotherapy & Oncology, 89, 172–179.CrossRef Ahmad, R., Hoogeman, M. S., Quint, S., Mens, J. W., De Pree, I., & Heijmen, B. J. (2008). Inter-fraction bladder filling variations and time trends for cervical cancer patients assessed with a portable 3-dimensional ultrasound bladder scanner. Radiotherapy & Oncology, 89, 172–179.CrossRef
22.
go back to reference Meijer, G. J., Van der Toorn, P. P., Bal, M., Schuring, D., Weterings, J., & De Wildt, M. (2012). High precision bladder cancer irradiation by integrating a library planning procedure of 6 prospectively generated SIB IMRT plans with image guidance using lipiodol markers. Radiotherapy & Oncology, 105(2), 174–179.CrossRef Meijer, G. J., Van der Toorn, P. P., Bal, M., Schuring, D., Weterings, J., & De Wildt, M. (2012). High precision bladder cancer irradiation by integrating a library planning procedure of 6 prospectively generated SIB IMRT plans with image guidance using lipiodol markers. Radiotherapy & Oncology, 105(2), 174–179.CrossRef
23.
go back to reference Heijkoop, S. T., Langerak, S. R., Quint, S., Bondar, L., Mens, J. W. M., Heijmen, B. J. M., et al. (2014). Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. International Journal of Radiation Oncology, Biology, Physics, 90(3), 673–679.CrossRef Heijkoop, S. T., Langerak, S. R., Quint, S., Bondar, L., Mens, J. W. M., Heijmen, B. J. M., et al. (2014). Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. International Journal of Radiation Oncology, Biology, Physics, 90(3), 673–679.CrossRef
24.
go back to reference Van Beek, S., Betgen, A., Buijs, M., Stam, J., Hartgring, L., Van Triest, B., et al. (2018). Pre-clinical experience of an adaptive plan library strategy in radiotherapy of rectal cancer: An inter-observer study. Physics and Imaging in Radiation Oncology, 6, 89–93.CrossRef Van Beek, S., Betgen, A., Buijs, M., Stam, J., Hartgring, L., Van Triest, B., et al. (2018). Pre-clinical experience of an adaptive plan library strategy in radiotherapy of rectal cancer: An inter-observer study. Physics and Imaging in Radiation Oncology, 6, 89–93.CrossRef
25.
go back to reference Hoisak, J. D. P., & Pawlicki, T. (2018). The role of optical surface imaging systems in radiation therapy. Seminars in Radiation Oncology, 28(3), 185–193.CrossRef Hoisak, J. D. P., & Pawlicki, T. (2018). The role of optical surface imaging systems in radiation therapy. Seminars in Radiation Oncology, 28(3), 185–193.CrossRef
26.
go back to reference Cerviño, L. I., Gupta, S., Rose, M. A., Yashar, C., & Jiang, S. B. (2009). Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Physics in Medicine & Biology, 54, 6853–6865.CrossRef Cerviño, L. I., Gupta, S., Rose, M. A., Yashar, C., & Jiang, S. B. (2009). Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Physics in Medicine & Biology, 54, 6853–6865.CrossRef
27.
go back to reference Kügele, M., Edvardsson, A., Berg, L., Alkner, S., Andersson Ljus, C., & Ceberg, S. (2018). Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. Journal of Applied Clinical Medical Physics, 19(1), 25–38.CrossRef Kügele, M., Edvardsson, A., Berg, L., Alkner, S., Andersson Ljus, C., & Ceberg, S. (2018). Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. Journal of Applied Clinical Medical Physics, 19(1), 25–38.CrossRef
28.
go back to reference Apicella, G., Loi, G., Torrente, S., Crespi, S., Beldì, D., Brambilla, M., et al. (2016). Three-dimensional surface imaging for detection of intra-fraction setup variations during radiotherapy of pelvic tumors. Radiologia Medica, 21(10), 805–810.CrossRef Apicella, G., Loi, G., Torrente, S., Crespi, S., Beldì, D., Brambilla, M., et al. (2016). Three-dimensional surface imaging for detection of intra-fraction setup variations during radiotherapy of pelvic tumors. Radiologia Medica, 21(10), 805–810.CrossRef
29.
go back to reference Zhao, B., Maquilan, G., Jiang, S., & Schwartz, D. L. (2018). Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. Journal of Applied Clinical Medical Physics, 19(1), 17–24.CrossRef Zhao, B., Maquilan, G., Jiang, S., & Schwartz, D. L. (2018). Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. Journal of Applied Clinical Medical Physics, 19(1), 17–24.CrossRef
Metagegevens
Titel
8 Techniek en toepassing van beeldgestuurde radiotherapie
Auteurs
Dr. ir. M. L. P. Dirkx
MSc S. Quint
Copyright
2020
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/16013_2019_7