Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2006

01-11-2006 | Original Article

Task-order coordination in dual-task performance and the lateral prefrontal cortex: an event-related fMRI study

Auteurs: André J. Szameitat, Jöran Lepsien, D. Yves von Cramon, Annette Sterr, Torsten Schubert

Gepubliceerd in: Psychological Research | Uitgave 6/2006

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

A crucial demand in dual tasks suffering from a capacity limited processing mechanism is task-order scheduling, i.e. the control of the order in which the two component tasks are processed by this limited processing mechanism. The present study aims to test whether the lateral prefrontal cortex (LPFC) is associated with this demand. For this, 15 participants performed a psychological refractory paradigm (PRP) type dual task in an event-related functional magnetic resonance (fMRI) experiment. In detail, two choice reaction tasks, a visual (response with right hand) and an auditory (response with left hand), were presented with a temporal offset of 200 ms, while the participants were required to respond to the tasks in the order of their presentation. Importantly, the presentation order of the tasks changed randomly. Based on previous evidence, we argue that trials in which the present task order changed as compared to the previous trial (different-order trials) impose higher demands on task coordination than same-order trials do. The analyses showed that cortical areas along the posterior part of the left inferior frontal sulcus as well as the right posterior middle frontal gyrus were more strongly activated in different-order than in same-order trials, thus supporting the conclusion that one function of the LPFC for dual-task performance is the temporal coordination of two tasks. Furthermore, it is discussed that the present findings favour the active scheduling over the passive queuing hypothesis of dual-task processing.
Voetnoten
1
According to the method of parametric manipulation the neuroanatomical correlate of a specific process can be localised by manipulating the difficulty of that process. Those brain regions, which change their activation in relation to the difficulty manipulation are assumed to be the neural substrate associated with the manipulated process (see e.g. Braver, Cohen, Nystrom, Jonides, Smith, & Noll, 1997).
 
2
Some authors question the existence of a structural capacity limitation but instead suggest that participants strategically introduce partial serial processing of the tasks, e.g. because it may be faster and/or may help to avoid errors (Logan & Gordon, 2001; Meyer & Kieras, 1997). However, as soon as there is serial processing, irrespective of its structural or strategic nature, the question in which order the tasks should be processed arises. Accordingly, task-order scheduling is required under both assumptions, and the current findings apply to both of them.
 
3
Additionally, one might argue that the order of the component tasks was confounded with hand order. In other words, in different-order trials, not only the order of the component tasks changed, but also the order in which the hands had to be used to give the responses. However, it seems unlikely that this confound can explain the current data. Firstly, in Experiment 3 of Luria and Meiran (2003) hand order was kept constant, and still the same behavioural differences between different-order and same-order trials were observed. Secondly, previous imaging research suggests that bimanual coordination and sequencing is mainly associated with premotor areas of the precentral gyrus, but not in the prefrontal areas observed in the current study (see e.g. Debaere, Wenderoth, Sunaert, Van Hecke, & Swinnen, 2004; Koeneke, Lutz, Wüstenberg, & Jäncke, 2004).
 
Literatuur
go back to reference Beeck, H.o.d., Wagemans, J., & Vogels, R. (2001). Can neuroimaging really tell us what the human brain is doing? The relevance of indirect measures of population activity. Acta Psychologica, Amsterdam, 107(1–3), 323–351.CrossRef Beeck, H.o.d., Wagemans, J., & Vogels, R. (2001). Can neuroimaging really tell us what the human brain is doing? The relevance of indirect measures of population activity. Acta Psychologica, Amsterdam, 107(1–3), 323–351.CrossRef
go back to reference Brass, M., & von Cramon, D.Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16(4), 609–620.CrossRefPubMed Brass, M., & von Cramon, D.Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16(4), 609–620.CrossRefPubMed
go back to reference Braun, J. (1998). Divided attention: Narrowing the gap between brain and behavior. In: Parasuraman, R. (ed), The attentive brain. (pp. 327–351). Cambridge, MA, US: The MIT Press. Braun, J. (1998). Divided attention: Narrowing the gap between brain and behavior. In: Parasuraman, R. (ed), The attentive brain. (pp. 327–351). Cambridge, MA, US: The MIT Press.
go back to reference Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., & Noll, D.C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.CrossRefPubMed Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., & Noll, D.C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.CrossRefPubMed
go back to reference Bunge, S.A., Hazeltine, E., Scanlon, M.D., Rosen, A.C., & Gabrieli, J.D. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage, 17(3), 1562–1571.CrossRefPubMed Bunge, S.A., Hazeltine, E., Scanlon, M.D., Rosen, A.C., & Gabrieli, J.D. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage, 17(3), 1562–1571.CrossRefPubMed
go back to reference Bunge, S.A., Kahn, I., Wallis, J.D., Miller, E.K., & Wagner, A.D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90(5), 3419–3428.PubMedCrossRef Bunge, S.A., Kahn, I., Wallis, J.D., Miller, E.K., & Wagner, A.D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90(5), 3419–3428.PubMedCrossRef
go back to reference Bunge, S.A., Ochsner, K.N., Desmond, J.E., Glover, G.H., & Gabrieli, J.D. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(Pt 10), 2074–2086.CrossRefPubMed Bunge, S.A., Ochsner, K.N., Desmond, J.E., Glover, G.H., & Gabrieli, J.D. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(Pt 10), 2074–2086.CrossRefPubMed
go back to reference Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R., & Dale, A.M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9(16), 3735–3739.PubMed Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R., & Dale, A.M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9(16), 3735–3739.PubMed
go back to reference Clark, C.R., Egan, G.F., McFarlane, A.C., Morris, P., Weber, D., Sonkkilla, C., et al. (2000). Updating working memory for words: A PET activation study. Human Brain Mapping, 9(1), 42–54.CrossRefPubMed Clark, C.R., Egan, G.F., McFarlane, A.C., Morris, P., Weber, D., Sonkkilla, C., et al. (2000). Updating working memory for words: A PET activation study. Human Brain Mapping, 9(1), 42–54.CrossRefPubMed
go back to reference Cohen, J.D., Braver, T.S., & O’Reilly, R.C. (1996). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1515–1527.PubMed Cohen, J.D., Braver, T.S., & O’Reilly, R.C. (1996). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1515–1527.PubMed
go back to reference Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.CrossRefPubMed Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.CrossRefPubMed
go back to reference Cortina, J.M., & Folger, R.G. (1998). When is it acceptable to accept a null hypothesis: No way, Jose? Organizational Research Methods, 1(3), 334–350. Cortina, J.M., & Folger, R.G. (1998). When is it acceptable to accept a null hypothesis: No way, Jose? Organizational Research Methods, 1(3), 334–350.
go back to reference Coull, J.T., & Nobre, A.C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. The Journal of Neuroscience, 18(18), 7426–7435.PubMed Coull, J.T., & Nobre, A.C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. The Journal of Neuroscience, 18(18), 7426–7435.PubMed
go back to reference De Jong, R. (1995). The role of preparation in overlapping-task performance. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 48(1), 2–25.PubMed De Jong, R. (1995). The role of preparation in overlapping-task performance. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 48(1), 2–25.PubMed
go back to reference Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S.P. (2004). Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage, 21(4), 1416–1427.CrossRefPubMed Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S.P. (2004). Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage, 21(4), 1416–1427.CrossRefPubMed
go back to reference Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13494–13499. Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13494–13499.
go back to reference D’Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research. Cognitive Brain Research, 7(1), 1–13.CrossRefPubMed D’Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research. Cognitive Brain Research, 7(1), 1–13.CrossRefPubMed
go back to reference D’Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279–281.CrossRefPubMed D’Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279–281.CrossRefPubMed
go back to reference Dove, A., Pollmann, S., Schubert, T., Wiggins, C.J., & von Cramon, D.Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Brain Research. Cognitive Brain Research, 9(1), 103–109.CrossRefPubMed Dove, A., Pollmann, S., Schubert, T., Wiggins, C.J., & von Cramon, D.Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Brain Research. Cognitive Brain Research, 9(1), 103–109.CrossRefPubMed
go back to reference Duncan, J. (1979). Divided attention: The whole is more than the sum of its parts. Dual-task interference as an indicator of on-line programming in simple movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 216–228.CrossRefPubMed Duncan, J. (1979). Divided attention: The whole is more than the sum of its parts. Dual-task interference as an indicator of on-line programming in simple movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 216–228.CrossRefPubMed
go back to reference Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820–829.CrossRefPubMed Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820–829.CrossRefPubMed
go back to reference Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping, 2, 189–210.CrossRef Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping, 2, 189–210.CrossRef
go back to reference Friston, K.J., Price, C.J., Fletcher, P., Moore, C., Frackowiak, R.S., & Dolan, R.J. (1996). The trouble with cognitive subtraction. Neuroimage, 4(2), 97–104.CrossRefPubMed Friston, K.J., Price, C.J., Fletcher, P., Moore, C., Frackowiak, R.S., & Dolan, R.J. (1996). The trouble with cognitive subtraction. Neuroimage, 4(2), 97–104.CrossRefPubMed
go back to reference Friston, K.J., Zarahn, E., Josephs, O., Henson, R.N., & Dale, A.M. (1999). Stochastic designs in event-related fMRI. Neuroimage, 10(5), 607–619.CrossRefPubMed Friston, K.J., Zarahn, E., Josephs, O., Henson, R.N., & Dale, A.M. (1999). Stochastic designs in event-related fMRI. Neuroimage, 10(5), 607–619.CrossRefPubMed
go back to reference Fuster, J.M. (2000). Executive frontal functions. Experimental Brain Research, 133(1), 66–70.CrossRef Fuster, J.M. (2000). Executive frontal functions. Experimental Brain Research, 133(1), 66–70.CrossRef
go back to reference Goldberg, T.E., Berman, K.F., Fleming, K., Ostrem, J., Horn, J.D.V., Esposito, G., et al. (1998). Uncoupling Cognitive Workload and Prefrontal Cortical Physiology: A PET rCBF Study. Neuroimage, 7(4), 296–303.CrossRefPubMed Goldberg, T.E., Berman, K.F., Fleming, K., Ostrem, J., Horn, J.D.V., Esposito, G., et al. (1998). Uncoupling Cognitive Workload and Prefrontal Cortical Physiology: A PET rCBF Study. Neuroimage, 7(4), 296–303.CrossRefPubMed
go back to reference Grafman, J. (1995). Similarities and distinctions among current models of prefrontal cortical functions. Annals of the New York Academy of Sciences, 769, 337–368.PubMed Grafman, J. (1995). Similarities and distinctions among current models of prefrontal cortical functions. Annals of the New York Academy of Sciences, 769, 337–368.PubMed
go back to reference Herath, P., Klingberg, T., Young, J., Amunts, K., & Roland, P. (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: An fMRI study. Cerebral Cortex, 11(9), 796–805.CrossRefPubMed Herath, P., Klingberg, T., Young, J., Amunts, K., & Roland, P. (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: An fMRI study. Cerebral Cortex, 11(9), 796–805.CrossRefPubMed
go back to reference Hopfinger, J.B., Buonocore, M.H., & Mangun, G.R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.CrossRefPubMed Hopfinger, J.B., Buonocore, M.H., & Mangun, G.R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.CrossRefPubMed
go back to reference Humphreys, G.W., & Price, C.J. (2001). Cognitive neuropsychology and functional brain imaging: Implications for functional and anatomical models of cognition. Acta Psychologica, 107(1–3), 119–153.CrossRefPubMed Humphreys, G.W., & Price, C.J. (2001). Cognitive neuropsychology and functional brain imaging: Implications for functional and anatomical models of cognition. Acta Psychologica, 107(1–3), 119–153.CrossRefPubMed
go back to reference Jersild, A.T. (1927). Mental set and shift. Archives of Psychology, 14(Whole No. 89). Jersild, A.T. (1927). Mental set and shift. Archives of Psychology, 14(Whole No. 89).
go back to reference Jiang, Y., Saxe, R., & Kanwisher, N. (2004). Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychological Science, 15(6), 390–396.CrossRefPubMed Jiang, Y., Saxe, R., & Kanwisher, N. (2004). Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychological Science, 15(6), 390–396.CrossRefPubMed
go back to reference Josephs, O., & Henson, R.N. (1999). Event-related functional magnetic resonance imaging: Modelling, inference and optimization. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1387), 1215–1228.CrossRefPubMed Josephs, O., & Henson, R.N. (1999). Event-related functional magnetic resonance imaging: Modelling, inference and optimization. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1387), 1215–1228.CrossRefPubMed
go back to reference Josephs, O., Turner, R., & Friston, K.J. (1997). Event-Related fMRI. Human Brain Mapping, 5, 243–248.CrossRef Josephs, O., Turner, R., & Friston, K.J. (1997). Event-Related fMRI. Human Brain Mapping, 5, 243–248.CrossRef
go back to reference Kluger, A.N., & Tikochinsky, J. (2001). The error of accepting the “theoretical” null hypothesis: The rise, fall, and resurrection of commonsense hypotheses in psychology. Psychological Bulletin, 127(3), 408–423.CrossRefPubMed Kluger, A.N., & Tikochinsky, J. (2001). The error of accepting the “theoretical” null hypothesis: The rise, fall, and resurrection of commonsense hypotheses in psychology. Psychological Bulletin, 127(3), 408–423.CrossRefPubMed
go back to reference Koch, I., Metin, B., & Schuch, S. (2003). The role of temporal unpredictability for process interference and code overlap in perception-action dual tasks. Psychological Research, 67(4), 244–252.CrossRefPubMed Koch, I., Metin, B., & Schuch, S. (2003). The role of temporal unpredictability for process interference and code overlap in perception-action dual tasks. Psychological Research, 67(4), 244–252.CrossRefPubMed
go back to reference Koch, I., Ruge, H., Brass, M., Rubin, O., Meiran, N., & Prinz, W. (2003). Equivalence of cognitive processes in brain imaging and behavioral studies: evidence from task switching. Neuroimage, 20(1), 572–577.CrossRefPubMed Koch, I., Ruge, H., Brass, M., Rubin, O., Meiran, N., & Prinz, W. (2003). Equivalence of cognitive processes in brain imaging and behavioral studies: evidence from task switching. Neuroimage, 20(1), 572–577.CrossRefPubMed
go back to reference Koeneke, S., Lutz, K., Wüstenberg, T., & Jäncke, L. (2004). Bimanual versus unimanual coordination: what makes the difference? Neuroimage, 22(3), 1336–1350.CrossRefPubMed Koeneke, S., Lutz, K., Wüstenberg, T., & Jäncke, L. (2004). Bimanual versus unimanual coordination: what makes the difference? Neuroimage, 22(3), 1336–1350.CrossRefPubMed
go back to reference Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122(Pt 5), 981–991.CrossRefPubMed Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122(Pt 5), 981–991.CrossRefPubMed
go back to reference Lien, M.C., & Ruthruff, E. (2004). Task switching in a hierarchical task structure: evidence for the fragility of the task repetition benefit. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(3), 697–713.PubMedCrossRef Lien, M.C., & Ruthruff, E. (2004). Task switching in a hierarchical task structure: evidence for the fragility of the task repetition benefit. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(3), 697–713.PubMedCrossRef
go back to reference Logan, G.D., & Gordon, R.D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393–434.CrossRefPubMed Logan, G.D., & Gordon, R.D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393–434.CrossRefPubMed
go back to reference Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.CrossRefPubMed Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.CrossRefPubMed
go back to reference Lohmann, G., Müller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., et al. (2001). Lipsia - A new software system for the evaluation of functional magnetic resonance images of the human brain. Computerized Medical Imaging and Graphics, 25(6), 449–457.CrossRefPubMed Lohmann, G., Müller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., et al. (2001). Lipsia - A new software system for the evaluation of functional magnetic resonance images of the human brain. Computerized Medical Imaging and Graphics, 25(6), 449–457.CrossRefPubMed
go back to reference Luria, R., & Meiran, N. (2003). Online order control in the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 556–574.CrossRefPubMed Luria, R., & Meiran, N. (2003). Online order control in the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 556–574.CrossRefPubMed
go back to reference Meyer, D.E., & Kieras, D.E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 3–65.CrossRefPubMed Meyer, D.E., & Kieras, D.E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 3–65.CrossRefPubMed
go back to reference Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., & Buckner, R.L. (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage, 11(6 Pt 1), 735–759.CrossRefPubMed Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., & Buckner, R.L. (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage, 11(6 Pt 1), 735–759.CrossRefPubMed
go back to reference Miller, E.K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 59–65.CrossRefPubMed Miller, E.K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 59–65.CrossRefPubMed
go back to reference Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefPubMed Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefPubMed
go back to reference Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In: Davidson, R.J., Schwartz, G.E., & Shapiro, D. (eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum Press. Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In: Davidson, R.J., Schwartz, G.E., & Shapiro, D. (eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum Press.
go back to reference Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.CrossRefPubMed Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.CrossRefPubMed
go back to reference Owen, A.M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133(1), 33–43.CrossRef Owen, A.M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133(1), 33–43.CrossRef
go back to reference Owen, A.M., Evans, A.C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6(1), 31–38.PubMed Owen, A.M., Evans, A.C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6(1), 31–38.PubMed
go back to reference Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244.CrossRefPubMed Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244.CrossRefPubMed
go back to reference Petrides, M. (1996). Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1455–1461; discussion 1461–1452. Petrides, M. (1996). Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1455–1461; discussion 1461–1452.
go back to reference Petrides, M., Alivisatos, B., Meyer, E., & Evans, A.C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences of the United States of America, 90(3), 878–882. Petrides, M., Alivisatos, B., Meyer, E., & Evans, A.C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences of the United States of America, 90(3), 878–882.
go back to reference Rosen, B.R., Buckner, R.L., & Dale, A.M. (1998). Event-related functional MRI: Past, present, and future. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 773–780. Rosen, B.R., Buckner, R.L., & Dale, A.M. (1998). Event-related functional MRI: Past, present, and future. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 773–780.
go back to reference Rowe, J.B., Toni, I., Josephs, O., Frackowiak, R.S., & Passingham, R.E. (2000). The prefrontal cortex: Response selection or maintenance within working memory? Science, 288(5471), 1656–1660.CrossRefPubMed Rowe, J.B., Toni, I., Josephs, O., Frackowiak, R.S., & Passingham, R.E. (2000). The prefrontal cortex: Response selection or maintenance within working memory? Science, 288(5471), 1656–1660.CrossRefPubMed
go back to reference Sarter, M., Berntson, G.G., & Cacioppo, J.T. (1996). Brain imaging and cognitive neuroscience. Toward strong inference in attributing function to structure. The American Psychologist, 51(1), 13–21.CrossRefPubMed Sarter, M., Berntson, G.G., & Cacioppo, J.T. (1996). Brain imaging and cognitive neuroscience. Toward strong inference in attributing function to structure. The American Psychologist, 51(1), 13–21.CrossRefPubMed
go back to reference Schubert, T. (1999). Processing differences between simple and choice reactions affect bottleneck localization in overlapping tasks. Journal of Experimental Psychology: Human Perception and Performance, 25(2), 408–425.CrossRef Schubert, T. (1999). Processing differences between simple and choice reactions affect bottleneck localization in overlapping tasks. Journal of Experimental Psychology: Human Perception and Performance, 25(2), 408–425.CrossRef
go back to reference Schubert, T., & Szameitat, A.J. (2003). Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Brain Research. Cognitive Brain Research, 17(3), 733–746.CrossRef Schubert, T., & Szameitat, A.J. (2003). Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Brain Research. Cognitive Brain Research, 17(3), 733–746.CrossRef
go back to reference Schubotz, R.I., Friederici, A.D., & von Cramon, D.Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage, 11(1), 1–12.CrossRefPubMed Schubotz, R.I., Friederici, A.D., & von Cramon, D.Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage, 11(1), 1–12.CrossRefPubMed
go back to reference Smith, E.E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.CrossRefPubMed Smith, E.E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.CrossRefPubMed
go back to reference Sohn, M.H., Ursu, S., Anderson, J.R., Stenger, V.A., & Carter, C.S. (2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13448–13453. Sohn, M.H., Ursu, S., Anderson, J.R., Stenger, V.A., & Carter, C.S. (2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13448–13453.
go back to reference Szameitat, A.J. (2003). The functionality of the lateral prefrontal cortex for dual-task performance [German]. Leipzig: Max Planck Institute of Cognitive Neuroscience, MPI Series in Cognitive Neuroscience (32). Szameitat, A.J. (2003). The functionality of the lateral prefrontal cortex for dual-task performance [German]. Leipzig: Max Planck Institute of Cognitive Neuroscience, MPI Series in Cognitive Neuroscience (32).
go back to reference Szameitat, A.J., Schubert, T., Müller, K., & von Cramon, D.Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184–1199.CrossRefPubMed Szameitat, A.J., Schubert, T., Müller, K., & von Cramon, D.Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184–1199.CrossRefPubMed
go back to reference Talairach, P., & Tournoux, J. (1988). A Stereotactic Coplanar Atlas of the Human Brain. Stuttgart: Thieme. Talairach, P., & Tournoux, J. (1988). A Stereotactic Coplanar Atlas of the Human Brain. Stuttgart: Thieme.
go back to reference Thirion, J.P. (1998). Image matching as a diffusion process: An analogy with Maxwell’s demons. Medical Image Analysis, 2(3), 243–260.CrossRefPubMed Thirion, J.P. (1998). Image matching as a diffusion process: An analogy with Maxwell’s demons. Medical Image Analysis, 2(3), 243–260.CrossRefPubMed
go back to reference Umiltà, C., Nicoletti, R., Simion, F., Tagliabue, M.E., & Bagnara, S. (1992). The cost of a strategy. European Journal of Cognitive Psychology, 4(1), 21–40. Umiltà, C., Nicoletti, R., Simion, F., Tagliabue, M.E., & Bagnara, S. (1992). The cost of a strategy. European Journal of Cognitive Psychology, 4(1), 21–40.
Metagegevens
Titel
Task-order coordination in dual-task performance and the lateral prefrontal cortex: an event-related fMRI study
Auteurs
André J. Szameitat
Jöran Lepsien
D. Yves von Cramon
Annette Sterr
Torsten Schubert
Publicatiedatum
01-11-2006
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 6/2006
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-005-0015-5

Andere artikelen Uitgave 6/2006

Psychological Research 6/2006 Naar de uitgave