Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2018

08-06-2017 | Original Article

Tactile motion lacks momentum

Auteurs: Gianluca Macauda, Bigna Lenggenhager, Rebekka Meier, Gregory Essick, Peter Brugger

Gepubliceerd in: Psychological Research | Uitgave 5/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The displacement of the final position of a moving object in the direction of the observed motion path, i.e. an overestimation, is known as representational momentum. It has been described both in the visual and the auditory domain, and is suggested to be modality-independent. Here, we tested whether a representational momentum can also be demonstrated in the somatosensory domain. While the cognitive literature on representational momentum suggests that it can, previous work on the psychophysics of tactile motion perception would rather predict an underestimation of the perceived endpoint of a tactile stimulus. Tactile motion stimuli were applied on the left and the right dorsal forearms of 32 healthy participants, who were asked to indicate the subjectively perceived endpoint of the stimulation. Velocity, length and direction of the trajectory were varied. Contrary to the prediction based on the representational momentum literature, participants in our experiment significantly displaced the endpoint against the direction of movement (underestimation). The results are thus compatible with previous psychophysical findings on the perception of tactile motion. Further studies combining paradigms from classical psychophysics and cognitive psychology will be needed to resolve the apparently paradoxical predictions by the two literatures.
Literatuur
go back to reference Actis-Grosso, R., & Stucchi, N. (2003). Shifting the start: Backward mislocation of the initial position of a motion. Journal of Experimental Psychology Human Perception and Performance, 29(3), 675–691.CrossRefPubMed Actis-Grosso, R., & Stucchi, N. (2003). Shifting the start: Backward mislocation of the initial position of a motion. Journal of Experimental Psychology Human Perception and Performance, 29(3), 675–691.CrossRefPubMed
go back to reference Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. Journal of Experimental Psychology Human Perception and Performance, 22(2), 480–501.CrossRefPubMed Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. Journal of Experimental Psychology Human Perception and Performance, 22(2), 480–501.CrossRefPubMed
go back to reference Brouwer, A.-M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: Translating versus transforming objects. Journal of Vision, 4(7), 575–584. doi:10.1167/4.7.5.CrossRefPubMed Brouwer, A.-M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: Translating versus transforming objects. Journal of Vision, 4(7), 575–584. doi:10.​1167/​4.​7.​5.CrossRefPubMed
go back to reference Cai, R. H., Jacobson, K., Baloh, R., Schlag-Rey, M., & Schlag, J. (2000). Vestibular signals can distort the perceived spatial relationship of retinal stimuli. Experimental Brain Research, 135(2), 275–278. doi:10.1007/s002210000549.CrossRefPubMed Cai, R. H., Jacobson, K., Baloh, R., Schlag-Rey, M., & Schlag, J. (2000). Vestibular signals can distort the perceived spatial relationship of retinal stimuli. Experimental Brain Research, 135(2), 275–278. doi:10.​1007/​s002210000549.CrossRefPubMed
go back to reference Chapman, L. J., & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition, 6(2), 175–183.CrossRefPubMed Chapman, L. J., & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition, 6(2), 175–183.CrossRefPubMed
go back to reference Christopher Bill, J., & Teft, L. W. (1972). Space–time relations: The effects of variations in stimulus and interstimulus interval duration on perceived visual extent. Acta Psychologica, 36(5), 358–369. doi:10.1016/0001-6918(72)90032-7.CrossRef Christopher Bill, J., & Teft, L. W. (1972). Space–time relations: The effects of variations in stimulus and interstimulus interval duration on perceived visual extent. Acta Psychologica, 36(5), 358–369. doi:10.​1016/​0001-6918(72)90032-7.CrossRef
go back to reference Essick, G. K. (1998). Factors affecting direction discrimination of moving tactile stimuli. ADVANCES IN PSYCHOLOGY-AMSTERDAM-, 127, 1–54.CrossRef Essick, G. K. (1998). Factors affecting direction discrimination of moving tactile stimuli. ADVANCES IN PSYCHOLOGY-AMSTERDAM-, 127, 1–54.CrossRef
go back to reference Essick, G. K., Bredehoeft, K. R., McLaughlin, D. F., & Szaniszlo, J. A. (1991). Directional sensitivity along the upper limb in humans. Somatosensory and Motor Research, 8(1), 13–22.CrossRefPubMed Essick, G. K., Bredehoeft, K. R., McLaughlin, D. F., & Szaniszlo, J. A. (1991). Directional sensitivity along the upper limb in humans. Somatosensory and Motor Research, 8(1), 13–22.CrossRefPubMed
go back to reference Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. Time, action and cognition (pp. 309–323). Berlin: Springer.CrossRef Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. Time, action and cognition (pp. 309–323). Berlin: Springer.CrossRef
go back to reference Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. The American Journal of Psychology, 97(3), 323–341.CrossRefPubMed Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. The American Journal of Psychology, 97(3), 323–341.CrossRefPubMed
go back to reference Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception, 33(5), 591–599.CrossRefPubMed Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception, 33(5), 591–599.CrossRefPubMed
go back to reference Goldreich, D., & Tong, J. (2013). Prediction, postdiction, and perceptual length contraction: A Bayesian low-speed prior captures the cutaneous rabbit and related illusions. Consciousness Research, 4, 221. doi:10.3389/fpsyg.2013.00221. Goldreich, D., & Tong, J. (2013). Prediction, postdiction, and perceptual length contraction: A Bayesian low-speed prior captures the cutaneous rabbit and related illusions. Consciousness Research, 4, 221. doi:10.​3389/​fpsyg.​2013.​00221.
go back to reference Hall, G. S., & Donaldson, H. H. (1885). Motor Sensations on the Skin. Mind, 10(40), 557–572.CrossRef Hall, G. S., & Donaldson, H. H. (1885). Motor Sensations on the Skin. Mind, 10(40), 557–572.CrossRef
go back to reference Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory and Cognition, 18(3), 299–309.CrossRefPubMed Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory and Cognition, 18(3), 299–309.CrossRefPubMed
go back to reference Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, direction, and velocity effects. The American Journal of Psychology, 108(2), 255–274. doi:10.2307/1423131.CrossRef Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, direction, and velocity effects. The American Journal of Psychology, 108(2), 255–274. doi:10.​2307/​1423131.CrossRef
go back to reference Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology Learning Memory and Cognition, 21(1), 241.CrossRef Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology Learning Memory and Cognition, 21(1), 241.CrossRef
go back to reference Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin and Review, 2(3), 322–338.CrossRefPubMed Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin and Review, 2(3), 322–338.CrossRefPubMed
go back to reference Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception and Psychophysics, 44(3), 211–221.CrossRefPubMed Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception and Psychophysics, 44(3), 211–221.CrossRefPubMed
go back to reference Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition, 82(3), 89–99.CrossRef Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition, 82(3), 89–99.CrossRef
go back to reference Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. The Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 58(6), 961–979. doi:10.1080/02724980443000368.CrossRefPubMed Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. The Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 58(6), 961–979. doi:10.​1080/​0272498044300036​8.CrossRefPubMed
go back to reference Intraub, H. (2004). Anticipatory spatial representation of 3D regions explored by sighted observers and a deaf-and-blind-observer. Cognition, 94(1), 19–37.CrossRefPubMed Intraub, H. (2004). Anticipatory spatial representation of 3D regions explored by sighted observers and a deaf-and-blind-observer. Cognition, 94(1), 19–37.CrossRefPubMed
go back to reference Kennett, S., Taylor-Clarke, M., & Haggard, P. (2001). Noninformative vision improves the spatial resolution of touch in humans. Current Biology, 11(15), 1188–1191.CrossRefPubMed Kennett, S., Taylor-Clarke, M., & Haggard, P. (2001). Noninformative vision improves the spatial resolution of touch in humans. Current Biology, 11(15), 1188–1191.CrossRefPubMed
go back to reference Kerzel, D. (2002). A matter of design: No representational momentum without predictability. Visual Cognition, 9(1–2), 66–80.CrossRef Kerzel, D. (2002). A matter of design: No representational momentum without predictability. Visual Cognition, 9(1–2), 66–80.CrossRef
go back to reference Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43(25), 2623–2635.CrossRefPubMed Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43(25), 2623–2635.CrossRefPubMed
go back to reference Langford, N., Hall, R. J., & Monty, R. A. (1973). Cutaneous perception of a track produced by a moving point across the skin. Journal of Experimental Psychology, 97(1), 59. doi:10.1037/h0033767.CrossRefPubMed Langford, N., Hall, R. J., & Monty, R. A. (1973). Cutaneous perception of a track produced by a moving point across the skin. Journal of Experimental Psychology, 97(1), 59. doi:10.​1037/​h0033767.CrossRefPubMed
go back to reference Lenggenhager, B., Loetscher, T., Kavan, N., Pallich, G., Brodtmann, A., Nicholls, M. E. R., & Brugger, P. (2012). Paradoxical extension into the contralesional hemispace in spatial neglect. Cortex A Journal Devoted to the Study of the Nervous System and Behavior, 48(10), 1320–1328. doi:10.1016/j.cortex.2011.10.003.CrossRefPubMed Lenggenhager, B., Loetscher, T., Kavan, N., Pallich, G., Brodtmann, A., Nicholls, M. E. R., & Brugger, P. (2012). Paradoxical extension into the contralesional hemispace in spatial neglect. Cortex A Journal Devoted to the Study of the Nervous System and Behavior, 48(10), 1320–1328. doi:10.​1016/​j.​cortex.​2011.​10.​003.CrossRefPubMed
go back to reference Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6(9), 387.CrossRefPubMed Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6(9), 387.CrossRefPubMed
go back to reference Tapley, S. M., & Bryden, M. P. (1985). A group test for the assessment of performance between the hands. Neuropsychologia, 23(2), 215–221.CrossRefPubMed Tapley, S. M., & Bryden, M. P. (1985). A group test for the assessment of performance between the hands. Neuropsychologia, 23(2), 215–221.CrossRefPubMed
go back to reference Thornton, I. M. (2014). Representational momentum and the human face: An empirical note. WICT, 2014, 101. Thornton, I. M. (2014). Representational momentum and the human face: An empirical note. WICT, 2014, 101.
go back to reference Trojan, J., Kleinböhl, D., Stolle, A. M., Andersen, O. K., Hölzl, R., & Arendt-Nielsen, L. (2006). Psychophysical “perceptual maps” of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Research, 1120(1), 106–113. doi:10.1016/j.brainres.2006.08.065.CrossRefPubMed Trojan, J., Kleinböhl, D., Stolle, A. M., Andersen, O. K., Hölzl, R., & Arendt-Nielsen, L. (2006). Psychophysical “perceptual maps” of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Research, 1120(1), 106–113. doi:10.​1016/​j.​brainres.​2006.​08.​065.CrossRefPubMed
go back to reference Whitsel, B. L., Favorov, O. V., Kelly, D. G., & Tommerdahl, M. (1991). Mechanisms of dynamic peri- and intra-columnar interactions in somatosensory cortex: Stimulus-specific contrast enhancement by NMDA receptor activation. In O. Frazen & J. Westman (Eds.), Information processing in the somatosensory system (pp. 353–369). London: Macmillan Press.CrossRef Whitsel, B. L., Favorov, O. V., Kelly, D. G., & Tommerdahl, M. (1991). Mechanisms of dynamic peri- and intra-columnar interactions in somatosensory cortex: Stimulus-specific contrast enhancement by NMDA receptor activation. In O. Frazen & J. Westman (Eds.), Information processing in the somatosensory system (pp. 353–369). London: Macmillan Press.CrossRef
go back to reference Whitsel, B. L., Franzen, O., Dreyer, D. A., Hollins, M., Young, M., Essick, G. K., & Wong, C. (1986). Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosensory Research, 3(3), 185–196.CrossRefPubMed Whitsel, B. L., Franzen, O., Dreyer, D. A., Hollins, M., Young, M., Essick, G. K., & Wong, C. (1986). Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosensory Research, 3(3), 185–196.CrossRefPubMed
go back to reference Yoshikawa, S., & Sato, W. (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive Affective and Behavioral Neuroscience, 8(1), 25–31.CrossRef Yoshikawa, S., & Sato, W. (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive Affective and Behavioral Neuroscience, 8(1), 25–31.CrossRef
Metagegevens
Titel
Tactile motion lacks momentum
Auteurs
Gianluca Macauda
Bigna Lenggenhager
Rebekka Meier
Gregory Essick
Peter Brugger
Publicatiedatum
08-06-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0879-1

Andere artikelen Uitgave 5/2018

Psychological Research 5/2018 Naar de uitgave