Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2013

01-07-2013 | Original Article

Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome

Auteurs: Michael J. Hove, John R. Iversen, Allen Zhang, Bruno H. Repp

Gepubliceerd in: Psychological Research | Uitgave 4/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target–distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.
Voetnoten
1
For applications of the optimal integration hypothesis to cue integration in a multimodal synchronization task, see Wing, Doumas, and Welchman (2010), and Elliott, Wing, and Welchman (2010, 2011).
 
2
Participants’ accuracy in those reports was considered satisfactory (92.3 % correct on average for musicians, 95.5 % correct for visual experts). One musician forgot to report the numbers but affirmed that she had watched the videos at all times; her data were retained.
 
3
An approximation to the linear standard deviation (SD) can be obtained by first calculating the circular standard deviation CSD = sqrt(2 × CV) (Fisher, 1993, p. 33) and then, since we had previously calculated the linear SD for the nine Yale musicians, determining the exact relationship between CSD and SD by linear regression of the mean values of these participants. The equation turned out to be SD = 98.36 × CSD – 0.45, R 2 = 0.999. According to that formula, CVs of 0.02, 0.03, and 0.04 correspond to SDs of 19.2, 23.6, and 27.4 ms, respectively.
 
4
It could be argued that the mean relative asynchrony for the 300 ms distracter lead/lag (this data point being duplicated at −300 and +300 ms in the figure) is a better reference because distracter effects should be minimal at the separation of half a cycle. With that reference, the distracter effects appear more nearly symmetric, but then it would seem that visual distracters exerted an effect at the zero lag, making taps occur later than they otherwise would. A possible reason for this could be that the point of subjective simultaneity of tones and ball bounces actually corresponded to a slight lead of the ball bounce, so that the bounces were perceived as lagging the tones when they were physically simultaneous (cf. Arrighi, Alais, & Burr, 2005, 2006; Petrini et al., 2009). A related possibility is that the real mean asynchrony (which we could not assess because of the video delays) was less negative (or more positive) for unimodal bounces than for unimodal tones, so the asynchrony shifted in the positive direction when the two stimuli occurred simultaneously. However, in the Iversen et al. (2012) study, the asynchrony for the bouncing ball was considerably more negative than for tones: −75 ms versus −8 ms.
 
Literatuur
go back to reference Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMed Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMed
go back to reference Arrighi, R., Alais, D., & Burr, D. (2005). Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vision Research, 45, 2917–2925.PubMedCrossRef Arrighi, R., Alais, D., & Burr, D. (2005). Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vision Research, 45, 2917–2925.PubMedCrossRef
go back to reference Arrighi, R., Alais, D., & Burr, D. (2006). Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. Journal of Vision, 6, 260–268.PubMedCrossRef Arrighi, R., Alais, D., & Burr, D. (2006). Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. Journal of Vision, 6, 260–268.PubMedCrossRef
go back to reference Bermant, R. I., & Welch, R. B. (1976). Effect of degree of separation of visual-auditory stimulus and eye position upon spatial interaction of vision and audition. Perceptual and Motor Skills, 43, 487–493.CrossRef Bermant, R. I., & Welch, R. B. (1976). Effect of degree of separation of visual-auditory stimulus and eye position upon spatial interaction of vision and audition. Perceptual and Motor Skills, 43, 487–493.CrossRef
go back to reference Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin and Review, 5, 482–489.CrossRef Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin and Review, 5, 482–489.CrossRef
go back to reference Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics, 29, 578–584.PubMedCrossRef Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics, 29, 578–584.PubMedCrossRef
go back to reference Bootsma, R. J., & van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16, 21–29.CrossRef Bootsma, R. J., & van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16, 21–29.CrossRef
go back to reference Burr, D., Banks, M. S., & Morrone, M. C. (2009). Auditory dominance over vision in perception of interval duration. Experimental Brain Research, 198, 49–57.CrossRef Burr, D., Banks, M. S., & Morrone, M. C. (2009). Auditory dominance over vision in perception of interval duration. Experimental Brain Research, 198, 49–57.CrossRef
go back to reference Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21, 515–532.PubMedCrossRef Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21, 515–532.PubMedCrossRef
go back to reference Elliott, M. T., Wing, A. M., & Welchman, A. E. (2010). Multisensory cues improve sensorimotor synchronisation. European Journal of Neuroscience, 31, 1–8.CrossRef Elliott, M. T., Wing, A. M., & Welchman, A. E. (2010). Multisensory cues improve sensorimotor synchronisation. European Journal of Neuroscience, 31, 1–8.CrossRef
go back to reference Elliott, M. T., Wing, A. M., & Welchman, A. E. (2011). The effect of ageing on multisensory integration for the control of movement timing. Experimental Brain Research, 213, 291–298.CrossRef Elliott, M. T., Wing, A. M., & Welchman, A. E. (2011). The effect of ageing on multisensory integration for the control of movement timing. Experimental Brain Research, 213, 291–298.CrossRef
go back to reference Ernst, M., & Banks, M. (2001). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRef Ernst, M., & Banks, M. (2001). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRef
go back to reference Fendrich, R., & Corballis, P. (2001). The temporal cross-capture of audition and vision. Attention, Perception & Psychophysics, 1, 719–725. Fendrich, R., & Corballis, P. (2001). The temporal cross-capture of audition and vision. Attention, Perception & Psychophysics, 1, 719–725.
go back to reference Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge, UK: Cambridge University Press.CrossRef Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge, UK: Cambridge University Press.CrossRef
go back to reference Fraisse, P. (1948). Rythmes auditifs et rythmes visuels (Visual and auditory rhythms). L’Anneé Psychologique, 49, 21–41.CrossRef Fraisse, P. (1948). Rythmes auditifs et rythmes visuels (Visual and auditory rhythms). L’Anneé Psychologique, 49, 21–41.CrossRef
go back to reference Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (in preparation). Synchronizing with auditory and visual rhythms: a reassessment of modality differences with fMRI. Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (in preparation). Synchronizing with auditory and visual rhythms: a reassessment of modality differences with fMRI.
go back to reference Hove, M. J., & Keller, P. E. (2010). Spatiotemporal relations and movement trajectories in visuomotor synchronization. Music Perception, 28, 15–26.CrossRef Hove, M. J., & Keller, P. E. (2010). Spatiotemporal relations and movement trajectories in visuomotor synchronization. Music Perception, 28, 15–26.CrossRef
go back to reference Hove, M. J., Spivey, M. J., & Krumhansl, C. L. (2010). Compatibility of motion facilitates visuomotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 36, 1525–1534.PubMedCrossRef Hove, M. J., Spivey, M. J., & Krumhansl, C. L. (2010). Compatibility of motion facilitates visuomotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 36, 1525–1534.PubMedCrossRef
go back to reference Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2012). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Manuscript submitted for publication. Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2012). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Manuscript submitted for publication.
go back to reference Kato, M., & Konishi, Y. (2006). Auditory dominance in the error correction process: a synchronized tapping study. Brain Research, 1084, 115–122.PubMedCrossRef Kato, M., & Konishi, Y. (2006). Auditory dominance in the error correction process: a synchronized tapping study. Brain Research, 1084, 115–122.PubMedCrossRef
go back to reference Kolers, P. A., & Brewster, J. M. (1985). Rhythms and responses. Journal of Experimental Psychology: Human Perception and Performance, 11, 150–167.PubMedCrossRef Kolers, P. A., & Brewster, J. M. (1985). Rhythms and responses. Journal of Experimental Psychology: Human Perception and Performance, 11, 150–167.PubMedCrossRef
go back to reference Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Acta Psychologica, 133, 28–37. Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Acta Psychologica, 133, 28–37.
go back to reference Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact of sensory information on sensorimotor synchronization in musicians and non-musicians. Acta Psychologica, 133, 28–37.PubMedCrossRef Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact of sensory information on sensorimotor synchronization in musicians and non-musicians. Acta Psychologica, 133, 28–37.PubMedCrossRef
go back to reference McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1996). On catching fly balls. Science, 273, 256–259.CrossRef McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1996). On catching fly balls. Science, 273, 256–259.CrossRef
go back to reference Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vision: examining temporal ventriloquism. Cognitive Brain Research, 17, 154–163.PubMedCrossRef Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vision: examining temporal ventriloquism. Cognitive Brain Research, 17, 154–163.PubMedCrossRef
go back to reference Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163, 226–238.CrossRef Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163, 226–238.CrossRef
go back to reference Petrini, K., Dahl, S., Roccesso, D., Waadeland, C. H., Avanzini, F., Puce, A., et al. (2009). Multisensory integration of drumming actions: Musical expertise affects perceived audiovisual asynchrony. Experimental Brain Research, 198, 339–352.CrossRef Petrini, K., Dahl, S., Roccesso, D., Waadeland, C. H., Avanzini, F., Puce, A., et al. (2009). Multisensory integration of drumming actions: Musical expertise affects perceived audiovisual asynchrony. Experimental Brain Research, 198, 339–352.CrossRef
go back to reference Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy. Journal of Experimental Psychology: Human Perception and Performance, 29, 290–309.PubMedCrossRef Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy. Journal of Experimental Psychology: Human Perception and Performance, 29, 290–309.PubMedCrossRef
go back to reference Repp, B. H. (2003b). Rate limits in sensorimotor synchronization with auditory and visual sequences: The synchronization threshold and the benefits and costs of interval subdivision. Journal of Motor Behavior, 35, 355–370.PubMedCrossRef Repp, B. H. (2003b). Rate limits in sensorimotor synchronization with auditory and visual sequences: The synchronization threshold and the benefits and costs of interval subdivision. Journal of Motor Behavior, 35, 355–370.PubMedCrossRef
go back to reference Repp, B. H. (2004). On the nature of phase attraction in sensorimotor synchronization with interleaved auditory sequences. Human Movement Science, 23, 389–413.PubMedCrossRef Repp, B. H. (2004). On the nature of phase attraction in sensorimotor synchronization with interleaved auditory sequences. Human Movement Science, 23, 389–413.PubMedCrossRef
go back to reference Repp, B. H., & Penel, A. (2002). Auditory domination in temporal processing: New evidence from synchronization with simulataneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28, 1085–1099.PubMedCrossRef Repp, B. H., & Penel, A. (2002). Auditory domination in temporal processing: New evidence from synchronization with simulataneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28, 1085–1099.PubMedCrossRef
go back to reference Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than visual rhythms. Psychological Research, 68, 252–270.PubMedCrossRef Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than visual rhythms. Psychological Research, 68, 252–270.PubMedCrossRef
go back to reference Tresilian, J. R. (1994). Perceptual and motor processes in interceptive timing. Human Movement Science, 13, 335–373.CrossRef Tresilian, J. R. (1994). Perceptual and motor processes in interceptive timing. Human Movement Science, 13, 335–373.CrossRef
go back to reference van Beers, R., Sittig, A., & Gon, J. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMed van Beers, R., Sittig, A., & Gon, J. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMed
go back to reference Vroomen, J., Bertelson, P., & de Gelder, B. (2001). The ventriloquist effect does not depend on the direction of automatic visual attention. Perception and Psychophysics, 73, 651–659.CrossRef Vroomen, J., Bertelson, P., & de Gelder, B. (2001). The ventriloquist effect does not depend on the direction of automatic visual attention. Perception and Psychophysics, 73, 651–659.CrossRef
go back to reference Wada, Y., Kitagawa, N., & Noguchi, K. (2003). Audio-visual integration in temporal perception. International Journal of Psychophysiology, 50, 117–124.PubMedCrossRef Wada, Y., Kitagawa, N., & Noguchi, K. (2003). Audio-visual integration in temporal perception. International Journal of Psychophysiology, 50, 117–124.PubMedCrossRef
go back to reference Warren, D., Welch, R., & McCarthy, T. (1981). The role of visual-auditory compellingness in the ventriloquist effect: Implications for transitivity among the spatial senses. Perception and Psychophysics, 30, 557–564.PubMedCrossRef Warren, D., Welch, R., & McCarthy, T. (1981). The role of visual-auditory compellingness in the ventriloquist effect: Implications for transitivity among the spatial senses. Perception and Psychophysics, 30, 557–564.PubMedCrossRef
go back to reference Welch, R., & Warren, D. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.PubMedCrossRef Welch, R., & Warren, D. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.PubMedCrossRef
go back to reference Wing, A., Doumas, M., & Welchman, A. E. (2010). Combining multisensory temporal information for movement synchronisation. Experimental Brain Research, 200, 277–282.CrossRef Wing, A., Doumas, M., & Welchman, A. E. (2010). Combining multisensory temporal information for movement synchronisation. Experimental Brain Research, 200, 277–282.CrossRef
Metagegevens
Titel
Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome
Auteurs
Michael J. Hove
John R. Iversen
Allen Zhang
Bruno H. Repp
Publicatiedatum
01-07-2013
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2013
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0441-0

Andere artikelen Uitgave 4/2013

Psychological Research 4/2013 Naar de uitgave