Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

01-03-2016 | Special Section: PROs in Non-Standard Settings (by invitation only) | Uitgave 3/2016

Quality of Life Research 3/2016

Symptom clusters in women with breast cancer: an analysis of data from social media and a research study

Tijdschrift:
Quality of Life Research > Uitgave 3/2016
Auteurs:
Sarah A. Marshall, Christopher C. Yang, Qing Ping, Mengnan Zhao, Nancy E. Avis, Edward H. Ip

Abstract

Purpose

User-generated content on social media sites, such as health-related online forums, offers researchers a tantalizing amount of information, but concerns regarding scientific application of such data remain. This paper compares and contrasts symptom cluster patterns derived from messages on a breast cancer forum with those from a symptom checklist completed by breast cancer survivors participating in a research study.

Methods

Over 50,000 messages generated by 12,991 users of the breast cancer forum on MedHelp.org were transformed into a standard form and examined for the co-occurrence of 25 symptoms. The k-medoid clustering method was used to determine appropriate placement of symptoms within clusters. Findings were compared with a similar analysis of a symptom checklist administered to 653 breast cancer survivors participating in a research study.

Results

The following clusters were identified using forum data: menopausal/psychological, pain/fatigue, gastrointestinal, and miscellaneous. Study data generated the clusters: menopausal, pain, fatigue/sleep/gastrointestinal, psychological, and increased weight/appetite. Although the clusters are somewhat different, many symptoms that clustered together in the social media analysis remained together in the analysis of the study participants. Density of connections between symptoms, as reflected by rates of co-occurrence and similarity, was higher in the study data.

Conclusions

The copious amount of data generated by social media outlets can augment findings from traditional data sources. When different sources of information are combined, areas of overlap and discrepancy can be detected, perhaps giving researchers a more accurate picture of reality. However, data derived from social media must be used carefully and with understanding of its limitations.

Log in om toegang te krijgen

Met onderstaand(e) abonnement(en) heeft u direct toegang:

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
Over dit artikel

Andere artikelen Uitgave 3/2016

Quality of Life Research 3/2016 Naar de uitgave