Skip to main content
Top

2024 | OriginalPaper | Hoofdstuk

8. Strategieën en technieken bij obstructieve longaandoeningen

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Beademing bij obstructieve longziekten als COPD en astma moet voldoen aan de hoofddoelen van mechanische beademing: adequate gaswisseling, veiligheid, comfort en een zo kort mogelijke beademingsduur. Meer specifiek moet het beademingsbeleid bij COPD en astma gericht zijn op het voorkomen of beperken van dynamische hyperinflatie. Expiratoire flowbelemmering door bronchoconstrictie, slijmvlieszwelling en verlies van elastische vezels speelt een belangrijke rol bij het ontstaan van dynamische hyperinflatie. Dynamische hyperinflatie kan leiden tot dyspneu, verhoogde ademarbeid, asynchronie tussen de patiënt en de beademingsmachine, pneumothorax en hemodynamische collaps. Non-invasieve beademing geniet bij COPD-exacerbatie de voorkeur. Indien deze onvoldoende resultaat geeft, kan worden overgegaan op invasieve beademing. Bij astma-exacerbatie is de rol van non-invasieve beademing minder duidelijk, hoewel het wel veilig lijkt. In zeer zeldzame gevallen kunnen extracorporele technieken worden toegepast.
Literatuur
1.
go back to reference Tuxen DV, Lane S. The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe air-flow obstruction. Am Rev Respir Dis. 1987;136:872–9.CrossRefPubMed Tuxen DV, Lane S. The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe air-flow obstruction. Am Rev Respir Dis. 1987;136:872–9.CrossRefPubMed
2.
go back to reference Marini JJ, Crooke PS III. A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis. 1993;147:14–24.CrossRefPubMed Marini JJ, Crooke PS III. A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis. 1993;147:14–24.CrossRefPubMed
3.
go back to reference Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure. Lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184:756–62. Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure. Lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184:756–62.
4.
5.
go back to reference Brochard L. Intrinsic (or auto-) PEEP during controlled mechanical ventilation. Intensive Care Med. 2002;28:1376–8.CrossRefPubMed Brochard L. Intrinsic (or auto-) PEEP during controlled mechanical ventilation. Intensive Care Med. 2002;28:1376–8.CrossRefPubMed
6.
go back to reference Leatherman JW, McArthur C, Shapiro RS. Effect of prolongation of expiratory time on dynamic hyperinflation in mechanically ventilated patients with severe asthma. Crit Care Med. 2004;32(7):1542–5.CrossRefPubMed Leatherman JW, McArthur C, Shapiro RS. Effect of prolongation of expiratory time on dynamic hyperinflation in mechanically ventilated patients with severe asthma. Crit Care Med. 2004;32(7):1542–5.CrossRefPubMed
7.
go back to reference Ram FSF, Picot J, Lightowler J, Wedzicha JA. Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2004;3:CD004104. Ram FSF, Picot J, Lightowler J, Wedzicha JA. Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2004;3:CD004104.
8.
go back to reference Ambrosino N, Vagheggini G. Noninvasive positive pressure ventilation in the acute care setting: where are we? Eur Resp J. 2008;31:874–86.CrossRef Ambrosino N, Vagheggini G. Noninvasive positive pressure ventilation in the acute care setting: where are we? Eur Resp J. 2008;31:874–86.CrossRef
9.
go back to reference Conti G, Antonelli M, Navalesi P, et al. Noninvasive versus conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med. 2002;28:1701–7.CrossRefPubMed Conti G, Antonelli M, Navalesi P, et al. Noninvasive versus conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med. 2002;28:1701–7.CrossRefPubMed
10.
go back to reference Scala R, Naldi M, Archinucci I, Coniglio G, Nava S. Noninvasive positive pressure ventilation in patients with acute exacerbations of COPD and varying levels of consciousness. Chest. 2005;128:1657–66.CrossRefPubMed Scala R, Naldi M, Archinucci I, Coniglio G, Nava S. Noninvasive positive pressure ventilation in patients with acute exacerbations of COPD and varying levels of consciousness. Chest. 2005;128:1657–66.CrossRefPubMed
11.
go back to reference Lim WJ, Akram RM, Karson KV, et al. Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma. Cochrane Database Syst Rev. 2012;12:CD004360. Lim WJ, Akram RM, Karson KV, et al. Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma. Cochrane Database Syst Rev. 2012;12:CD004360.
12.
go back to reference Pallin M, Hew M, Naughton MT. Is non-invasive ventilation safe in acute severe astma? Respirology. 2015;20:251–7.CrossRefPubMed Pallin M, Hew M, Naughton MT. Is non-invasive ventilation safe in acute severe astma? Respirology. 2015;20:251–7.CrossRefPubMed
13.
go back to reference Hajizadeh N, Goldfeld K, Crothers K. What happens to patients with COPD with long-term oxygen treatment who receive mechanical ventilation for COPD exacerbation? A 1-year retrospective follow-up study. Thorax. 2015;70(3):294–6.CrossRefPubMed Hajizadeh N, Goldfeld K, Crothers K. What happens to patients with COPD with long-term oxygen treatment who receive mechanical ventilation for COPD exacerbation? A 1-year retrospective follow-up study. Thorax. 2015;70(3):294–6.CrossRefPubMed
14.
go back to reference Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest. 2015;148(2):340–55.CrossRefPubMed Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest. 2015;148(2):340–55.CrossRefPubMed
15.
go back to reference Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.CrossRefPubMed Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.CrossRefPubMed
16.
go back to reference Brenner B, Corbridge T, Kazzi A. Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. Proc Am Thorac Soc. 2009;6(4):371–9.CrossRefPubMed Brenner B, Corbridge T, Kazzi A. Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. Proc Am Thorac Soc. 2009;6(4):371–9.CrossRefPubMed
17.
18.
go back to reference Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRefPubMed Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRefPubMed
19.
go back to reference Kondili E, Alexopoulou C, Prinianakis G, et al. Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 2004;30:1311–8.CrossRefPubMed Kondili E, Alexopoulou C, Prinianakis G, et al. Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 2004;30:1311–8.CrossRefPubMed
20.
21.
go back to reference Caramez MP, Borges JB, Tucci MR, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33:1519–28.CrossRefPubMedPubMedCentral Caramez MP, Borges JB, Tucci MR, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33:1519–28.CrossRefPubMedPubMedCentral
22.
go back to reference Fernandez R, Benito S, Blanch L, Net A. Intrinsic PEEP: a cause of inspiratory muscle ineffectivity. Intensive Care Med. 1988;15(1):51–2.CrossRefPubMed Fernandez R, Benito S, Blanch L, Net A. Intrinsic PEEP: a cause of inspiratory muscle ineffectivity. Intensive Care Med. 1988;15(1):51–2.CrossRefPubMed
24.
go back to reference Tonan M, Hashimoto S, Kimura A, et al. Successful treatment of severe asthma-associated plastic bronchitis with extracorporeal membrane oxygenation. J Anesth. 2012;26(2):265–8.CrossRefPubMed Tonan M, Hashimoto S, Kimura A, et al. Successful treatment of severe asthma-associated plastic bronchitis with extracorporeal membrane oxygenation. J Anesth. 2012;26(2):265–8.CrossRefPubMed
Metagegevens
Titel
Strategieën en technieken bij obstructieve longaandoeningen
Auteur
Hans ter Haar
Copyright
2024
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-3031-7_8