Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

01-12-2019 | Research | Uitgave 1/2019 Open Access

Journal of Foot and Ankle Research 1/2019

Stiffness modification of two ankle-foot orthosis types to optimize gait in individuals with non-spastic calf muscle weakness – a proof-of-concept study

Tijdschrift:
Journal of Foot and Ankle Research > Uitgave 1/2019
Auteurs:
Hilde E. Ploeger, Niels F. J. Waterval, Frans Nollet, Sicco A. Bus, Merel-Anne Brehm
Belangrijke opmerkingen

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13047-019-0348-8) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Background

To reduce gait problems in individuals with non-spastic calf muscle weakness, spring-like ankle-foot orthoses (AFOs) are often applied, but they are not individually optimized to treatment outcome. The aim of this proof-of-concept study was to evaluate the effects of modifying the stiffness for two spring-like AFO types with shoes-only as reference on gait outcomes in three individuals with calf muscle weakness due to polio.

Methods

We assessed 3D gait biomechanics, walking speed and walking energy cost for shoes-only and five stiffness conditions of a dorsal-leaf-spring AFO and a spring-hinged AFO. Outcomes were compared between stiffness conditions in the two AFOs and three subjects.

Results

Maximum ankle dorsiflexion angle decreased with increasing stiffness in both AFOs (up to 6–8°) and all subjects. Maximum knee extension angle changed little between stiffness conditions, however different responses between the AFOs and subjects were observed compared to shoes-only. Walking speed remained unchanged across conditions. For walking energy cost, we found fairly large differences across stiffness conditions with both AFOs and between subjects (range 3–15%).

Conclusions

Modifying AFO stiffness in individuals with non-spastic calf muscle weakness resulted in substantial differences in ankle biomechanics and walking energy cost with no effect on speed. Our results provide proof-of-concept that individually optimizing AFO stiffness can clinically beneficially improve gait performance.

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Extra materiaal
Additional file 1: Gait biomechanics of subject A (calf muscle strength MRC 4). Shoes-only (1) is performed at the DLS-AFO testing day, Shoes-only (2) is performed at the SH-AFO testing day. Abbreviations: DLS-AFO: dorsal-leaf-spring ankle-foot-orthosis, SH-AFO: spring-hinged ankle-foot-orthosis, k: stiffness in N•m•deg− 1, DF: dorsiflexion, PF: plantarflexion, EX: extension, FL: flexion, Gen: generation, Abs: absorption, CoP: center of pressure. (TIF 1005 kb)
13047_2019_348_MOESM1_ESM.tif
Additional file 2: Gait biomechanics of subject B (calf muscle strength MRC 4). Since all AFO conditions were tested at one day there is only one shoes-only (Shoes-only (1)) condition performed. Abbreviations: DLS-AFO: dorsal-leaf-spring ankle-foot-orthosis, SH-AFO: spring-hinged ankle-foot-orthosis, k: stiffness in N•m•deg− 1, DF: dorsiflexion, PF: plantarflexion, EX: extension, FL: flexion, Gen: generation, Abs: absorption, CoP: center of pressure. (TIF 995 kb)
13047_2019_348_MOESM2_ESM.tif
Additional file 3: Gait biomechanics of subject C (calf muscle strength MRC 0). Shoes-only (1) is performed at the DLS-AFO testing day, Shoes-only (2) is performed at the SH-AFO testing day. Abbreviations: DLS-AFO: dorsal-leaf-spring ankle-foot-orthosis, SH-AFO: spring-hinged ankle-foot-orthosis, k: stiffness in N•m•deg− 1, DF: dorsiflexion, PF: plantarflexion, EX: extension, FL: flexion, Gen: generation, Abs: absorption, CoP: center of pressure. (TIF 1057 kb)
13047_2019_348_MOESM3_ESM.tif
Literatuur
Over dit artikel

Andere artikelen Uitgave 1/2019

Journal of Foot and Ankle Research 1/2019 Naar de uitgave