Skip to main content
Top

2020 | OriginalPaper | Hoofdstuk

6 Specifieke bestralingsapparatuur

Auteurs : Drs. V. G. M. Althof, ir. W. J. F. Dries, dr. A. L. Petoukhova, M. H. W. Peeters, M. Y. G. van den Elzen-Peeters, prof. dr. med. dr. E. G. C. Troost, dr. B. van Asselen, MSc. O. Bohoudi, dr. ir. M. E. P. Philippens, dr. ir. F. W. Wittkamper, dr. M. T. W. Milder, M. Huge, A. E. Smit

Gepubliceerd in: Techniek in de radiotherapie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Inhoud – 1 Tomotherapie – 2 Intraoperatieve radiotherapie (IORT) – 3 Protonentherapie: klinische en fysische aspecten – 4 De MRI-versneller – 5 Orthovolt – 6 CyberKnife – 7 Gamma Knife – Paragraaf 6.1 beschrijft de systeemconfiguratie, de basale werking en de functionaliteit van hardware en software van tomotherapie, een radiotherapiebehandelsysteem voor intensiteitgemoduleerde radiotherapie (IMRT) met een geïntegreerd CT-systeem voor ‘image guided’ radiotherapie (IGRT). Tomotherapie is sinds 2002 beschikbaar. Wereldwijd zijn er ruim zeshonderd systemen operationeel. Besproken worden: bundelvorming en veiligheid, dosisplanning, uitvoering van een bestralingsplan, inclusief de ‘image guidance’, doelgebieden waarvoor tomotherapie geschikt is, adaptieve radiotherapie, ‘quality assurance’ en toekomstige ontwikkelingen. In paragraaf 6.2 worden besproken: voor- en nadelen, indicaties en complicaties, faciliteiten, hulpmiddelen en werkwijze van intraoperatieve elektronenradiotherapie (IOERT), hulpmiddelen en werkwijze voor kV-IORT en verantwoordelijkheden tijdens IORT-behandeling. Paragraaf 6.3 beschrijft protonentherapie, een vorm van externe bestraling die wordt toegepast bij de behandeling van maligne aandoeningen. Protonen worden met behulp van een cyclotron of synchrotron geaccelereerd om de tumoren met hoogenergetische partikels met een energie tot 230 mega-elektronvolt (MeV) middels passief gestrooide of actief gescande technieken te bestralen. Door de specifieke fysische en biologische eigenschappen van protonen kan het doelvolume zeer precies worden bestraald en kunnen de normale weefsels aan de achterzijde van het doelvolume beter worden gespaard. Internationaal geaccepteerde indicaties voor protonentherapie zijn pediatrische tumoren of tumoren uitgaande van de schedelbasis, melanomen van het oog, chordomen en chondrosarcomen bij volwassenen. Andere indicaties worden in het kader van klinische studies behandeld, bijvoorbeeld in Nederland als ‘model-based approach’. Met de in paragraaf 6.4 besproken MRI-versneller kan tijdens de bestraling de tumor goed zichtbaar gemaakt worden. Het is mogelijk voor elke fractie een nieuw plan te maken op de anatomie van dat moment. Door preciezer te bestralen, kunnen kleinere marges worden gebruikt, wat leidt tot een lagere dosis in omliggend gezond weefsel. Zo kan de tumor hoger gedoseerd worden, met een betere kans op genezing. Tevens maakt dit hypofractionering mogelijk voor verschillende tumorgebieden. Verschillende aspecten van het gebruik van een MRI-versneller en bestraling in aanwezigheid van een magneetveld worden belicht. Paragraaf 6.5 bespreekt orthovoltapparatuur. De eenvoudigste apparatuur voor uitwendige radiotherapie bestaat uit röntgenapparaten met een versnellingspotentiaal van circa 100 tot 300 kilovolt (kV). Deze apparaten worden in een aantal centra in Nederland gebruikt voor oppervlakkige tumoren, maar ook voor niet-maligne aandoeningen (pijnlijke gewrichten, keloïd) en palliatie. Voordeel van een orthovoltapparaat is dat een patiënt hiermee niet alleen liggend, maar ook zittend (bijvoorbeeld, in een rolstoel) bestraald kan worden. Wanneer uit meerdere energieën gekozen kan worden, zal de dieptewerking (procentuele dieptedosis – PDD) een belangrijke keuzefactor zijn op basis van de diepte van het te bestralen volume. Bij elk orthovoltapparaat zijn tubi met verschillende afmetingen en focus-huidafstanden beschikbaar. Als het te bestralen gebied onregelmatig van vorm is, wordt lood als afdekmateriaal gebruikt. In paragraaf 6.6 komt de CyberKnife aan de orde, een robotische, stereotactische versneller, waarbij de bestraling plaatsvindt door middel van niet-coplanaire bundels. Uniek aan dit systeem is de mogelijkheid om tijdens de bestraling continu de positie van de patiënt te verifiëren met orthogonale kV-beelden en hiervoor te corrigeren door kleine aanpassingen in de positie van de robotische versneller (‘tracking’). Typische doelgebieden zijn: longen, maligne en benigne intracraniële laesies, lever, pancreas, prostaat en oligometastasen. De lijst met doelgebieden groeit nog steeds. Paragraaf 6.7 bespreekt de Gamma Knife, die specifiek is ontwikkeld voor aandoeningen in de hersenen, zoals benigne of maligne tumoren, vasculaire aandoeningen en functionele aandoeningen. Een groot aantal Cobalt-60-bronnen wordt met behulp van collimatoren van 4, 8 of 16 mm gericht op één punt in de ruimte. De patiënt kan met een frame of met een masker gefixeerd worden. Omdat de veldgrootte vaststaat, is de manier van plannen en bestralen heel anders dan bij externe bestralingen met een versneller. Als het doelgebied groter is dan met één collimatoropening bestraald kan worden, wordt de dosis opgebouwd uit meerdere bestralingen. Eerst wordt een deel van het doelgebied bestraald. Vervolgens wordt de patiënt verplaatst met behulp van de tafel en wordt een ander deel van hetzelfde doelgebied bestraald.
Voetnoten
1
De auteur is Nienke van de Hoeve en Dominique Hofmeijer erkentelijk voor het kritisch doornemen van de tekst.
 
2
Tomotherapie is een radiotherapiebehandelsysteem van de firma Accuray (Sunnyvale, Californië, Verenigde Staten). Het systeem is ontworpen voor intensiteitgemoduleerde radiotherapie (IMRT) met een geïntegreerd computertomografiesysteem (CT-systeem) voor ‘image guided’ radiotherapie (IGRT).
 
3
Er zijn twee firma’s die een dosisplanningssysteem voor tomotherapie leveren: de firma Accuray (Sunnyvale, Californië) met ‘Precision’ en de firma RaySearch (Stockholm, Zweden) met ‘RayTomo’.
 
4
Alle figuren van Elekta Instrument AB Stockholm zijn gebruikt met toestemming (www.​elekta.​com).
 
Literatuur
1.
go back to reference Bailat, C. J., Baechler, S., Moeckli, R., Pachoud, M., Pisaturo, O., & Bochud, F. O. (2011). The concept and challenges of TomoTherapy accelerators. Reports on Progress in Physics, 74(8), 086701. Bailat, C. J., Baechler, S., Moeckli, R., Pachoud, M., Pisaturo, O., & Bochud, F. O. (2011). The concept and challenges of TomoTherapy accelerators. Reports on Progress in Physics, 74(8), 086701.
2.
go back to reference Sterpin, E., Janssens, G., Orban De Xivry, J., Goossens, S., Wanet, M., Lee, J. A., et al. (2012). Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: A 4D Monte Carlo treatment planning study. Radiotherapy and Oncology, 104(2), 173–180.PubMed Sterpin, E., Janssens, G., Orban De Xivry, J., Goossens, S., Wanet, M., Lee, J. A., et al. (2012). Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: A 4D Monte Carlo treatment planning study. Radiotherapy and Oncology, 104(2), 173–180.PubMed
3.
go back to reference Althof, V., De Ost, B., Reynaert, N., Schubert, K., Sterpin, E., Van de Kamer, J. B. (2017). Quality assurance for tomotherapy systems. Report 27 of the Netherlands Commission on Radiation Dosimetry. Delft: Netherlands Commission on Radiation Dosimetry. Althof, V., De Ost, B., Reynaert, N., Schubert, K., Sterpin, E., Van de Kamer, J. B. (2017). Quality assurance for tomotherapy systems. Report 27 of the Netherlands Commission on Radiation Dosimetry. Delft: Netherlands Commission on Radiation Dosimetry.
4.
go back to reference Langen, K. M., Papanikolaou, N., Balog, J., Crilly, R., Followill, D., Goddu, S. M., et al. (2010). QA for helical tomotherapy: Report of the AAPM Task Group 148. Medical Physics, 37(9), 4817–4853.PubMed Langen, K. M., Papanikolaou, N., Balog, J., Crilly, R., Followill, D., Goddu, S. M., et al. (2010). QA for helical tomotherapy: Report of the AAPM Task Group 148. Medical Physics, 37(9), 4817–4853.PubMed
5.
go back to reference Althof, V., Van Haaren, P., Westendorp, R., Nuver, T., Kramer, D., Ikink, M., et al. (2012). A quality assurance tool for helical tomotherapy using a step-wedge phantom and the on-board MVCT detector. Journal of Applied Clinical Medical Physics, 13(1), 3585.PubMed Althof, V., Van Haaren, P., Westendorp, R., Nuver, T., Kramer, D., Ikink, M., et al. (2012). A quality assurance tool for helical tomotherapy using a step-wedge phantom and the on-board MVCT detector. Journal of Applied Clinical Medical Physics, 13(1), 3585.PubMed
8.
go back to reference Bosman, S. J., Holman, F. A., Nieuwenhuijzen, G. A. P., Martijn, H., Creemers, G. -J., & Rutten, H. J. T. (2014). Feasibility of reirradiation in the treatment of locally recurrent rectal cancer. British Journal of Surgery, 101, 1280–1289. https://doi.org/10.1002/bjs.9569. Bosman, S. J., Holman, F. A., Nieuwenhuijzen, G. A. P., Martijn, H., Creemers, G. -J., & Rutten, H. J. T. (2014). Feasibility of reirradiation in the treatment of locally recurrent rectal cancer. British Journal of Surgery, 101, 1280–1289. https://​doi.​org/​10.​1002/​bjs.​9569.
9.
go back to reference Polgár, C., Van Limbergen, E., Pötter, R., Kovács, G., Polo, A., Lyczek, J., et al. (2010). Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group. Radiotherapy and Oncology, 94, 264–273. https://doi.org/10.1016/j.radonc.2010.01.014. Polgár, C., Van Limbergen, E., Pötter, R., Kovács, G., Polo, A., Lyczek, J., et al. (2010). Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group. Radiotherapy and Oncology, 94, 264–273. https://​doi.​org/​10.​1016/​j.​radonc.​2010.​01.​014.
11.
go back to reference Correa, C., Harris, E. E., Leonardi, M. C., Smith, B. D., Taghian, A. G., Thompson, A. M., et al. (2017). Accelerated partial breast irradiation: Executive summary for the update of an ASTRO Evidence-Based consensus statement. Practical Radiation Oncology, 7, 73–79. https://doi.org/10.1016/j.prro.2016.09.007. Correa, C., Harris, E. E., Leonardi, M. C., Smith, B. D., Taghian, A. G., Thompson, A. M., et al. (2017). Accelerated partial breast irradiation: Executive summary for the update of an ASTRO Evidence-Based consensus statement. Practical Radiation Oncology, 7, 73–79. https://​doi.​org/​10.​1016/​j.​prro.​2016.​09.​007.
12.
go back to reference Veronesi, U., Orecchia, R., Maisonneuve, P., Viale, G., Rotmensz, N., Sangalli, C., et al. (2013). Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): A randomised controlled equivalence trial. Lancet Oncology, 14, 1269–1277. https://doi.org/10.1016/S1470-2045(13)70497-2. Veronesi, U., Orecchia, R., Maisonneuve, P., Viale, G., Rotmensz, N., Sangalli, C., et al. (2013). Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): A randomised controlled equivalence trial. Lancet Oncology, 14, 1269–1277. https://​doi.​org/​10.​1016/​S1470-2045(13)70497-2.
13.
go back to reference Vaidya, J. S., Wenz, F., Bulsara, M., Tobias, J. S., Joseph, D. J., Keshtgar, M., et al. (2014). Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. 383, 603–613. https://doi.org/10.1016/S0140-6736(13)61950-9. Vaidya, J. S., Wenz, F., Bulsara, M., Tobias, J. S., Joseph, D. J., Keshtgar, M., et al. (2014). Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. 383, 603–613. https://​doi.​org/​10.​1016/​S0140-6736(13)61950-9.
14.
15.
go back to reference Rombi, B., Vennarini, S., Vinante, L., Ravanelli, D., & Amichetti, M. (2014). Proton radiotherapy for pediatric tumors: Review of first clinical results. Italian Journal of Pediatrics, 40(74), 1–9. Rombi, B., Vennarini, S., Vinante, L., Ravanelli, D., & Amichetti, M. (2014). Proton radiotherapy for pediatric tumors: Review of first clinical results. Italian Journal of Pediatrics, 40(74), 1–9.
16.
go back to reference Bamberg, M., Molls, M., & Sack, H. (Red.). (2009). Radioonkologie Klinik und Grundlagen (2e druk). München: Zuckschwerdt. Bamberg, M., Molls, M., & Sack, H. (Red.). (2009). Radioonkologie Klinik und Grundlagen (2e druk). München: Zuckschwerdt.
17.
go back to reference Herrmann, T., Baumann, M., & Dörr, W. (2006). Klinische Strahlenbiologie: kurz und bündig. München: Urban & Fischer. Herrmann, T., Baumann, M., & Dörr, W. (2006). Klinische Strahlenbiologie: kurz und bündig. München: Urban & Fischer.
18.
go back to reference Jakobi, A., et al. (2015). NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncologica (Madr), 54, 1658–1664. Jakobi, A., et al. (2015). NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncologica (Madr), 54, 1658–1664.
19.
go back to reference Jakobi, A., et al. (2015). Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy. Frontiers in Oncology, 5(5), 256.PubMedPubMedCentral Jakobi, A., et al. (2015). Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy. Frontiers in Oncology, 5(5), 256.PubMedPubMedCentral
20.
go back to reference Baumann, M., et al. (2015). DEGRO Deutsche Gesellschaft für Radioonkologie e.V. Stellungnahme zur Strahlentherapie mit Protonen in Deutschland. Berlijn: Deutsche Gesellschaft für Radioonkologie. Baumann, M., et al. (2015). DEGRO Deutsche Gesellschaft für Radioonkologie e.V. Stellungnahme zur Strahlentherapie mit Protonen in Deutschland. Berlijn: Deutsche Gesellschaft für Radioonkologie.
21.
go back to reference Miralbell, R., Lomax, A., Cella, L., & Schneider, U. (2002). Potential reduction of the incidence of radiation-induced second cancers by unsing proton beams in the treatment of pediatric tumors. International Journal of Radiation Oncology, Biology, Physics, 54(2), 824–829.PubMed Miralbell, R., Lomax, A., Cella, L., & Schneider, U. (2002). Potential reduction of the incidence of radiation-induced second cancers by unsing proton beams in the treatment of pediatric tumors. International Journal of Radiation Oncology, Biology, Physics, 54(2), 824–829.PubMed
22.
go back to reference Kummer, B., Makocki, S., Krause, M., & Troost, E. G. C. (2018). Teilchenstrahltherapie in der Radioonkologie. Onkologe, 24(1), 1–16. Kummer, B., Makocki, S., Krause, M., & Troost, E. G. C. (2018). Teilchenstrahltherapie in der Radioonkologie. Onkologe, 24(1), 1–16.
23.
go back to reference Kerr, D. J., Haller, D. G., Van de Velde, C. J. H., & Baumann, M. (Eds.). (2016). Oxford textbook of oncology. Philadelphia, PA: Oxford University Press. Kerr, D. J., Haller, D. G., Van de Velde, C. J. H., & Baumann, M. (Eds.). (2016). Oxford textbook of oncology. Philadelphia, PA: Oxford University Press.
24.
go back to reference Wambersie, A., et al. (2011). Isoeffective dose: A concept for biologic weighting of absorbed dose in proton and heavier-ion therapies. Radiation Protection Dosimetry, 143(2–4), 481–486.PubMed Wambersie, A., et al. (2011). Isoeffective dose: A concept for biologic weighting of absorbed dose in proton and heavier-ion therapies. Radiation Protection Dosimetry, 143(2–4), 481–486.PubMed
25.
go back to reference Lühr, A., et al. (2018). Relative biological effectiveness in proton beam therapy: Current knowledge and future challenges. Clinical and Translational Radiation Oncology, 9, 35–41.PubMedPubMedCentral Lühr, A., et al. (2018). Relative biological effectiveness in proton beam therapy: Current knowledge and future challenges. Clinical and Translational Radiation Oncology, 9, 35–41.PubMedPubMedCentral
26.
go back to reference Ladra, M. M., et al. (2014). Preliminary results of a phase II trial of proton radiotherapy for pediatric rhabdomyosarcoma. Journal of Clinical Oncology, 32(33), 3762–3770.PubMedPubMedCentral Ladra, M. M., et al. (2014). Preliminary results of a phase II trial of proton radiotherapy for pediatric rhabdomyosarcoma. Journal of Clinical Oncology, 32(33), 3762–3770.PubMedPubMedCentral
27.
go back to reference Yock, T. I., et al. (2014). Quality of life outcomes in proton and photon treated pediatric brain tumor survivors. Radiotherapy and Oncology, 113(1), 89–94.PubMedPubMedCentral Yock, T. I., et al. (2014). Quality of life outcomes in proton and photon treated pediatric brain tumor survivors. Radiotherapy and Oncology, 113(1), 89–94.PubMedPubMedCentral
28.
go back to reference Amichetti, M., Cianchetti, M., Amelio, D., Enrici, R. M., & Minniti, G. (2009). Proton therapy in chordoma of the base of the skull: A systematic review. Neurosurgical Review, 32(4), 403–416.PubMed Amichetti, M., Cianchetti, M., Amelio, D., Enrici, R. M., & Minniti, G. (2009). Proton therapy in chordoma of the base of the skull: A systematic review. Neurosurgical Review, 32(4), 403–416.PubMed
29.
go back to reference Remick, J. S., et al. (2016). First clinical report of proton beam therapy for postoperative radiotherapy for non-small-cell lung cancer. Clinical Lung Cancer, 18(4), 364–371. Remick, J. S., et al. (2016). First clinical report of proton beam therapy for postoperative radiotherapy for non-small-cell lung cancer. Clinical Lung Cancer, 18(4), 364–371.
30.
go back to reference Jakobi, A., et al. (2015). Identification of patient benefit from proton therapy for advanced head and neck cancer patients based on individual and subgroup normal tissue complication probability analysis. Radiation Oncology Biology, 92(5), 1165–1174. Jakobi, A., et al. (2015). Identification of patient benefit from proton therapy for advanced head and neck cancer patients based on individual and subgroup normal tissue complication probability analysis. Radiation Oncology Biology, 92(5), 1165–1174.
31.
go back to reference Ares, C., et al. (2009). Effectiveness and safty of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: First long-term report. Radiation Oncology Biology, 75, 1111–1118. Ares, C., et al. (2009). Effectiveness and safty of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: First long-term report. Radiation Oncology Biology, 75, 1111–1118.
32.
go back to reference Chung, C. S., Yock, T. I., Nelson, K., Xu, Y., Keating, N. L., & Tarbell, N. J. (2013). Incidence of second malignancies among patients treated with proton versus photon radiation. Radiation Oncology Biology, 87(1), 46–52. Chung, C. S., Yock, T. I., Nelson, K., Xu, Y., Keating, N. L., & Tarbell, N. J. (2013). Incidence of second malignancies among patients treated with proton versus photon radiation. Radiation Oncology Biology, 87(1), 46–52.
33.
go back to reference Moteabbed, M., Yock, T. I., & Paganetti, H. (2014). The risk of radiation-induced second cancers in the high to medium dose region: A comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Physics in Medicine and Biology, 59(12), 2883–2899.PubMed Moteabbed, M., Yock, T. I., & Paganetti, H. (2014). The risk of radiation-induced second cancers in the high to medium dose region: A comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Physics in Medicine and Biology, 59(12), 2883–2899.PubMed
34.
go back to reference Allen, A. M., et al. (2012). An evidence based review of proton beam therapy: The report of ASTRO’s emerging technology committee. Radiotherapy and Oncology, 103(1), 8–11.PubMed Allen, A. M., et al. (2012). An evidence based review of proton beam therapy: The report of ASTRO’s emerging technology committee. Radiotherapy and Oncology, 103(1), 8–11.PubMed
35.
go back to reference Rydhög, J. S., et al. (2017). Liquid fiducial marker applicability in proton therapy of locally advanced lung cancer. Radiotherapy and Oncology, 122, 393–399. Rydhög, J. S., et al. (2017). Liquid fiducial marker applicability in proton therapy of locally advanced lung cancer. Radiotherapy and Oncology, 122, 393–399.
36.
go back to reference Wohlfahrt, P., et al. (2017). Clinical implementation of dual-energy CT for proton treatment planning on pseudo-monoenergetic CT scans. International Journal of Radiation Oncology Biology Physics, 97(2), 427–434. Wohlfahrt, P., et al. (2017). Clinical implementation of dual-energy CT for proton treatment planning on pseudo-monoenergetic CT scans. International Journal of Radiation Oncology Biology Physics, 97(2), 427–434.
37.
go back to reference Löck, S., et al. (2015). Implementation of a software for REmote COMparison of PARticlE and photon treatment plans: ReCompare. Zeitschrift für Medizinische Physik, 25(3), 287–294.PubMed Löck, S., et al. (2015). Implementation of a software for REmote COMparison of PARticlE and photon treatment plans: ReCompare. Zeitschrift für Medizinische Physik, 25(3), 287–294.PubMed
38.
go back to reference Lagendijk, J. J., et al. (2014). MR guidance in radiotherapy. Physics in Medicine and Biology, 59(21), R349–R369.PubMed Lagendijk, J. J., et al. (2014). MR guidance in radiotherapy. Physics in Medicine and Biology, 59(21), R349–R369.PubMed
39.
go back to reference Lagendijk, J. J. W., & Bakker, C. J. G. (2000). MRI-guided radiotherapy: A MRI based linear accelerator. Radiotherapy and Oncology, 56(S1), S60. Lagendijk, J. J. W., & Bakker, C. J. G. (2000). MRI-guided radiotherapy: A MRI based linear accelerator. Radiotherapy and Oncology, 56(S1), S60.
40.
go back to reference Raaymakers, B. W., et al. (2017). First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine and Biology, 62(23), L41–L50. Raaymakers, B. W., et al. (2017). First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine and Biology, 62(23), L41–L50.
41.
go back to reference Mutic, S., & Dempsey, J. F. (2014). The ViewRay system: Magnetic resonance-guided and controlled radiotherapy. Seminars in Radiation Oncology, 24(3), 196–199.PubMed Mutic, S., & Dempsey, J. F. (2014). The ViewRay system: Magnetic resonance-guided and controlled radiotherapy. Seminars in Radiation Oncology, 24(3), 196–199.PubMed
42.
go back to reference Keyvanloo, A., et al. (2012). Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models. Medical Physics, 39(10), 6509–6521.PubMed Keyvanloo, A., et al. (2012). Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models. Medical Physics, 39(10), 6509–6521.PubMed
43.
go back to reference Raaijmakers, A. J., Raaymakers, B. W., & Lagendijk, J. J. (2008). Magnetic-field-induced dose effects in MR-guided radiotherapy systems: Dependence on the magnetic field strength. Physics in Medicine and Biology, 53(4), 909–923.PubMed Raaijmakers, A. J., Raaymakers, B. W., & Lagendijk, J. J. (2008). Magnetic-field-induced dose effects in MR-guided radiotherapy systems: Dependence on the magnetic field strength. Physics in Medicine and Biology, 53(4), 909–923.PubMed
44.
go back to reference Raaijmakers, A. J., et al. (2007). Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Physics in Medicine and Biology, 52(4), 929–939.PubMed Raaijmakers, A. J., et al. (2007). Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Physics in Medicine and Biology, 52(4), 929–939.PubMed
45.
go back to reference Oborn, B. M., et al. (2009). High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under the influence of transverse magnetic fields. Medical Physics, 36(8), 3549–3559.PubMed Oborn, B. M., et al. (2009). High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under the influence of transverse magnetic fields. Medical Physics, 36(8), 3549–3559.PubMed
46.
go back to reference Oborn, B. M., et al. (2010). Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus. Medical Physics, 37(10), 5208–5217.PubMed Oborn, B. M., et al. (2010). Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus. Medical Physics, 37(10), 5208–5217.PubMed
47.
go back to reference Hissoiny, S., et al. (2011). Fast dose calculation in magnetic fields with GPUMCD. Physics in Medicine and Biology, 56(16), 5119–5129.PubMed Hissoiny, S., et al. (2011). Fast dose calculation in magnetic fields with GPUMCD. Physics in Medicine and Biology, 56(16), 5119–5129.PubMed
48.
go back to reference Okamoto, H., et al. (2018). Monte Carlo modeling of a 60Co MRI-guided radiotherapy system on Geant4 and experimental verification of dose calculation under a magnetic field of 0.35 T. Journal of Radiation Research, 60(1), 116–123. Okamoto, H., et al. (2018). Monte Carlo modeling of a 60Co MRI-guided radiotherapy system on Geant4 and experimental verification of dose calculation under a magnetic field of 0.35 T. Journal of Radiation Research, 60(1), 116–123.
49.
go back to reference Ahmad, S. B., et al. (2016). Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4. Medical Physics, 43(2), 894–907.PubMed Ahmad, S. B., et al. (2016). Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4. Medical Physics, 43(2), 894–907.PubMed
50.
go back to reference Li, H. H., et al. (2015). Patient-specific quality assurance for the delivery of (60)Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field. International Journal of Radiation Oncology Biololgy Physics, 91(1), 65–72. Li, H. H., et al. (2015). Patient-specific quality assurance for the delivery of (60)Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field. International Journal of Radiation Oncology Biololgy Physics, 91(1), 65–72.
51.
go back to reference Houweling, A. C., et al. (2016). Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine and Biology, 61(3), N80–N89. Houweling, A. C., et al. (2016). Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine and Biology, 61(3), N80–N89.
52.
go back to reference De Vries, J. H. W., et al. (2018). Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac. Physics in Medicine and Biology, 63(2), 02nt02. De Vries, J. H. W., et al. (2018). Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac. Physics in Medicine and Biology, 63(2), 02nt02.
53.
go back to reference Barten, D. L. J., et al. (2018). Suitability of EBT3 GafChromic film for quality assurance in MR-guided radiotherapy at 0.35 T with and without real-time MR imaging. Physics in Medicine and Biology, 63(16), 165014. Barten, D. L. J., et al. (2018). Suitability of EBT3 GafChromic film for quality assurance in MR-guided radiotherapy at 0.35 T with and without real-time MR imaging. Physics in Medicine and Biology, 63(16), 165014.
54.
go back to reference Bohoudi, O., et al. (2017). Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiotherapy and Oncology, 125(3), 439–444.PubMed Bohoudi, O., et al. (2017). Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiotherapy and Oncology, 125(3), 439–444.PubMed
55.
go back to reference Winkel, D., et al. (2018). Evaluation of online plan adaptation strategies for the 1.5T MR-linac based on ‘First-In-Man’ treatments. Cureus, 10(4), e2431. Winkel, D., et al. (2018). Evaluation of online plan adaptation strategies for the 1.5T MR-linac based on ‘First-In-Man’ treatments. Cureus, 10(4), e2431.
56.
go back to reference Lagerwaard, F., et al. (2018). Combined inter- and intrafractional plan adaptation using fraction partitioning in magnetic resonance-guided radiotherapy delivery. Cureus, 10(4), e2434.PubMedPubMedCentral Lagerwaard, F., et al. (2018). Combined inter- and intrafractional plan adaptation using fraction partitioning in magnetic resonance-guided radiotherapy delivery. Cureus, 10(4), e2434.PubMedPubMedCentral
57.
go back to reference Kontaxis, C., et al. (2017). Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Physics in Medicine and Biology, 62(18), 7233–7248.PubMed Kontaxis, C., et al. (2017). Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Physics in Medicine and Biology, 62(18), 7233–7248.PubMed
58.
go back to reference Kim, J. I., et al. (2017). Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy. Medical Physics, 44(9), 4838–4846.PubMed Kim, J. I., et al. (2017). Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy. Medical Physics, 44(9), 4838–4846.PubMed
59.
go back to reference Saenz, D. L., et al. (2015). Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification. Journal of Applied Clinical Medical Physics, 16(6), 30–40. Saenz, D. L., et al. (2015). Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification. Journal of Applied Clinical Medical Physics, 16(6), 30–40.
60.
go back to reference Goldschmidt, H., & Panizzon, R. G. (Eds.). (2011). Modern dermatologic radiation therapy. New York: Springer. Goldschmidt, H., & Panizzon, R. G. (Eds.). (2011). Modern dermatologic radiation therapy. New York: Springer.
61.
go back to reference British Institute of Radiology (1996). Central axis depth dose data for use in radiotherapy: A Survey of this Supplement Depth Doses and Related Data Measured in Water Or Equivalent Media. British Journal of Radiology, Suppl 25, London. British Institute of Radiology (1996). Central axis depth dose data for use in radiotherapy: A Survey of this Supplement Depth Doses and Related Data Measured in Water Or Equivalent Media. British Journal of Radiology, Suppl 25, London.
64.
go back to reference Adler, J. R., Jr., Chang, S. D., Murphy, M. J., Doty, J., Geis, P., & Hancock, S. L. (1997). The cyberknife: A frameless robotic system for radiosurgery. Radiosurgery, 69, 124–128. Adler, J. R., Jr., Chang, S. D., Murphy, M. J., Doty, J., Geis, P., & Hancock, S. L. (1997). The cyberknife: A frameless robotic system for radiosurgery. Radiosurgery, 69, 124–128.
65.
go back to reference Ding, C., et al. (2018). Cyberknife stereotactic radiosurgery and radiation therapy treatment planning system. Medical Dosimetry, 43(2), 129–140.PubMed Ding, C., et al. (2018). Cyberknife stereotactic radiosurgery and radiation therapy treatment planning system. Medical Dosimetry, 43(2), 129–140.PubMed
66.
go back to reference Kilby, W., Dooley, J. R., Kuduvalli, G., Saye, S., & Maurer, C. R., Jr. (2010). The Cyberknife robotic radiosurgery system in 2010. Technology in Cancer Research and Treatment, 9, 433–452.PubMed Kilby, W., Dooley, J. R., Kuduvalli, G., Saye, S., & Maurer, C. R., Jr. (2010). The Cyberknife robotic radiosurgery system in 2010. Technology in Cancer Research and Treatment, 9, 433–452.PubMed
67.
go back to reference Fürwerger, C., Prins, P., Coskan, H., & Heijmen, B. (2016). Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Medical Physics, 43, 2063–2071. Fürwerger, C., Prins, P., Coskan, H., & Heijmen, B. (2016). Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Medical Physics, 43, 2063–2071.
68.
go back to reference Van der Voort van Zyp, N. C., Hoogeman, M. S., Van de Water, S., Levendag, P. C., Van der Holt, B., Heijmen, B. J., et al. (2010). Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size. Radiotherapy and Oncology, 1, 5–60. Van der Voort van Zyp, N. C., Hoogeman, M. S., Van de Water, S., Levendag, P. C., Van der Holt, B., Heijmen, B. J., et al. (2010). Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size. Radiotherapy and Oncology, 1, 5–60.
69.
go back to reference Nuyttens, J. J., Prévost, J.-B., Praag, J., Hoogeman, M., Van Klaveren, R. J., Levendag, P. C., et al. (2006). Lung tumor tracking during stereotactic radiotherapy treatment with the Cyberknife: Marker placement and early results. Acta Oncologica, 45, 961–965.PubMed Nuyttens, J. J., Prévost, J.-B., Praag, J., Hoogeman, M., Van Klaveren, R. J., Levendag, P. C., et al. (2006). Lung tumor tracking during stereotactic radiotherapy treatment with the Cyberknife: Marker placement and early results. Acta Oncologica, 45, 961–965.PubMed
70.
go back to reference Dieterich, S., & Pawlicki, T. (2008). Cyberknife image-guided delivery and quality assurance. International Journal of Radiation Oncology*Biology*Physics, 71, S126–S130. Dieterich, S., & Pawlicki, T. (2008). Cyberknife image-guided delivery and quality assurance. International Journal of Radiation Oncology*Biology*Physics, 71, S126–S130.
Metagegevens
Titel
6 Specifieke bestralingsapparatuur
Auteurs
Drs. V. G. M. Althof
ir. W. J. F. Dries
dr. A. L. Petoukhova
M. H. W. Peeters
M. Y. G. van den Elzen-Peeters
prof. dr. med. dr. E. G. C. Troost
dr. B. van Asselen
MSc. O. Bohoudi
dr. ir. M. E. P. Philippens
dr. ir. F. W. Wittkamper
dr. M. T. W. Milder
M. Huge
A. E. Smit
Copyright
2020
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/16013_2019_5