Skip to main content
Top
Gepubliceerd in:

28-12-2017 | Original Article

Spatial and frequency specificity of the ventriloquism aftereffect revisited

Auteurs: Patrick Bruns, Brigitte Röder

Gepubliceerd in: Psychological Research | Uitgave 7/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Exposure to audiovisual stimuli with a consistent spatial misalignment seems to result in a recalibration of unisensory auditory spatial representations. The previous studies have suggested that this so-called ventriloquism aftereffect is confined to the trained region of space, but yielded inconsistent results as to whether or not recalibration generalizes to untrained sound frequencies. Here, we reassessed the spatial and frequency specificity of the ventriloquism aftereffect by testing whether auditory spatial perception can be independently recalibrated for two different sound frequencies and/or at two different spatial locations. Recalibration was confined to locations within the trained hemifield, suggesting that spatial representations were independently adjusted for the two hemifields. The frequency specificity of the ventriloquism aftereffect depended on the presence or the absence of conflicting audiovisual adaptation stimuli within the same hemifield. Moreover, adaptation of two different sound frequencies in opposite directions (leftward vs. rightward) resulted in a selective suppression of leftward recalibration, even when the adapting stimuli were presented in different hemifields. Thus, instead of representing a fixed stimulus-driven process, cross-modal recalibration seems to critically depend on the sensory context and takes into account inconsistencies in the cross-modal input.
Literatuur
go back to reference Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.CrossRefPubMed Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.CrossRefPubMed
go back to reference Altmann, C. F., Henning, M., Döring, M. K., & Kaiser, J. (2008). Effects of feature-selective attention on auditory pattern and location processing. NeuroImage, 41, 69–79.CrossRefPubMed Altmann, C. F., Henning, M., Döring, M. K., & Kaiser, J. (2008). Effects of feature-selective attention on auditory pattern and location processing. NeuroImage, 41, 69–79.CrossRefPubMed
go back to reference Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin and Review, 5, 482–489.CrossRef Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin and Review, 5, 482–489.CrossRef
go back to reference Bertelson, P., Frissen, I., Vroomen, J., & de Gelder, B. (2006). The aftereffects of ventriloquism: Patterns of spatial generalization. Perception and Psychophysics, 68, 428–436.CrossRefPubMed Bertelson, P., Frissen, I., Vroomen, J., & de Gelder, B. (2006). The aftereffects of ventriloquism: Patterns of spatial generalization. Perception and Psychophysics, 68, 428–436.CrossRefPubMed
go back to reference Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics, 29, 578–584.CrossRefPubMed Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics, 29, 578–584.CrossRefPubMed
go back to reference Bonath, B., Noesselt, T., Krauel, K., Tyll, S., Tempelmann, C., & Hillyard, S. A. (2014). Audio-visual synchrony modulates the ventriloquist illusion and its neural/spatial representation in the auditory cortex. NeuroImage, 98, 425–434.CrossRefPubMed Bonath, B., Noesselt, T., Krauel, K., Tyll, S., Tempelmann, C., & Hillyard, S. A. (2014). Audio-visual synchrony modulates the ventriloquist illusion and its neural/spatial representation in the auditory cortex. NeuroImage, 98, 425–434.CrossRefPubMed
go back to reference Bonath, B., Noesselt, T., Martinez, A., Mishra, J., Schwiecker, K., Heinze, H.-J., & Hillyard, S. A. (2007). Neural basis of the ventriloquist illusion. Current Biology, 17, 1697–1703.CrossRefPubMed Bonath, B., Noesselt, T., Martinez, A., Mishra, J., Schwiecker, K., Heinze, H.-J., & Hillyard, S. A. (2007). Neural basis of the ventriloquist illusion. Current Biology, 17, 1697–1703.CrossRefPubMed
go back to reference Bruns, P., Liebnau, R., & Röder, B. (2011). Cross-modal training induces changes in spatial representations early in the auditory processing pathway. Psychological Science, 22, 1120–1126.CrossRefPubMed Bruns, P., Liebnau, R., & Röder, B. (2011). Cross-modal training induces changes in spatial representations early in the auditory processing pathway. Psychological Science, 22, 1120–1126.CrossRefPubMed
go back to reference Bruns, P., Maiworm, M., & Röder, B. (2014). Reward expectation influences audiovisual spatial integration. Attention Perception and Psychophysics, 76, 1815–1827.CrossRef Bruns, P., Maiworm, M., & Röder, B. (2014). Reward expectation influences audiovisual spatial integration. Attention Perception and Psychophysics, 76, 1815–1827.CrossRef
go back to reference Bruns, P., Spence, C., & Röder, B. (2011). Tactile recalibration of auditory spatial representations. Experimental Brain Research, 209, 333–344.CrossRefPubMed Bruns, P., Spence, C., & Röder, B. (2011). Tactile recalibration of auditory spatial representations. Experimental Brain Research, 209, 333–344.CrossRefPubMed
go back to reference Callan, A., Callan, D., & Ando, H. (2015). An fMRI study of the ventriloquism effect. Cerebral Cortex, 25, 4248–4258.CrossRefPubMed Callan, A., Callan, D., & Ando, H. (2015). An fMRI study of the ventriloquism effect. Cerebral Cortex, 25, 4248–4258.CrossRefPubMed
go back to reference Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention Perception and Psychophysics, 75, 790–811.CrossRef Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention Perception and Psychophysics, 75, 790–811.CrossRef
go back to reference Dyson, B. J., & Quinlan, P. T. (2004). Stimulus processing constraints in audition. Journal of Experimental Psychology Human Perception and Performance, 30, 1117–1131.CrossRefPubMed Dyson, B. J., & Quinlan, P. T. (2004). Stimulus processing constraints in audition. Journal of Experimental Psychology Human Perception and Performance, 30, 1117–1131.CrossRefPubMed
go back to reference Eramudugolla, R., Kamke, M. R., Soto-Faraco, S., & Mattingley, J. B. (2011). Perceptual load influences auditory space perception in the ventriloquist aftereffect. Cognition, 118, 62–74.CrossRefPubMed Eramudugolla, R., Kamke, M. R., Soto-Faraco, S., & Mattingley, J. B. (2011). Perceptual load influences auditory space perception in the ventriloquist aftereffect. Cognition, 118, 62–74.CrossRefPubMed
go back to reference Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.CrossRefPubMed Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.CrossRefPubMed
go back to reference Formisano, E., Kim, D.-S., Di Salle, F., van de Moortele, P.-F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40, 859–869.CrossRefPubMed Formisano, E., Kim, D.-S., Di Salle, F., van de Moortele, P.-F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40, 859–869.CrossRefPubMed
go back to reference Frissen, I., Vroomen, J., & de Gelder, B. (2012). The aftereffects of ventriloquism: The time course of the visual recalibration of auditory localization. Seeing and Perceiving, 25, 1–14.CrossRefPubMed Frissen, I., Vroomen, J., & de Gelder, B. (2012). The aftereffects of ventriloquism: The time course of the visual recalibration of auditory localization. Seeing and Perceiving, 25, 1–14.CrossRefPubMed
go back to reference Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2003). The aftereffects of ventriloquism: Are they sound-frequency specific? Acta Psychologica, 113, 315–327.CrossRefPubMed Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2003). The aftereffects of ventriloquism: Are they sound-frequency specific? Acta Psychologica, 113, 315–327.CrossRefPubMed
go back to reference Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2005). The aftereffects of ventriloquism: Generalization across sound-frequencies. Acta Psychologica, 118, 93–100.CrossRefPubMed Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2005). The aftereffects of ventriloquism: Generalization across sound-frequencies. Acta Psychologica, 118, 93–100.CrossRefPubMed
go back to reference Heron, J., Roach, N. W., Hanson, J. V. M., McGraw, P. V., & Whitaker, D. (2012). Audiovisual time perception is spatially specific. Experimental Brain Research, 218, 477–485.CrossRefPubMedPubMedCentral Heron, J., Roach, N. W., Hanson, J. V. M., McGraw, P. V., & Whitaker, D. (2012). Audiovisual time perception is spatially specific. Experimental Brain Research, 218, 477–485.CrossRefPubMedPubMedCentral
go back to reference Heron, J., Roach, N. W., Whitaker, D., & Hanson, J. V. M. (2010). Attention regulates the plasticity of multisensory timing. European Journal of Neuroscience, 31, 1755–1762.CrossRefPubMed Heron, J., Roach, N. W., Whitaker, D., & Hanson, J. V. M. (2010). Attention regulates the plasticity of multisensory timing. European Journal of Neuroscience, 31, 1755–1762.CrossRefPubMed
go back to reference King, A. J. (2009). Visual influences on auditory spatial learning. Philosophical Transactions of the Royal Society B Biological Sciences, 364, 331–339.CrossRef King, A. J. (2009). Visual influences on auditory spatial learning. Philosophical Transactions of the Royal Society B Biological Sciences, 364, 331–339.CrossRef
go back to reference Kopčo, N., Lin, I.-F., Shinn-Cunningham, B. G., & Groh, J. M. (2009). Reference frame of the ventriloquism aftereffect. Journal of Neuroscience, 29, 13809–13814.CrossRefPubMed Kopčo, N., Lin, I.-F., Shinn-Cunningham, B. G., & Groh, J. M. (2009). Reference frame of the ventriloquism aftereffect. Journal of Neuroscience, 29, 13809–13814.CrossRefPubMed
go back to reference Lewald, J. (2002). Rapid adaptation to auditory-visual spatial disparity. Learning and Memory, 9, 268–278.CrossRefPubMed Lewald, J. (2002). Rapid adaptation to auditory-visual spatial disparity. Learning and Memory, 9, 268–278.CrossRefPubMed
go back to reference Lewald, J., Ehrenstein, W. H., & Guski, R. (2001). Spatio-temporal constraints for auditory-visual integration. Behavioural Brain Research, 121, 69–79.CrossRefPubMed Lewald, J., Ehrenstein, W. H., & Guski, R. (2001). Spatio-temporal constraints for auditory-visual integration. Behavioural Brain Research, 121, 69–79.CrossRefPubMed
go back to reference Magezi, D. A., & Krumbholz, K. (2010). Evidence for opponent-channel coding of interaural time differences in human auditory cortex. Journal of Neurophysiology, 104, 1997–2007.CrossRefPubMedPubMedCentral Magezi, D. A., & Krumbholz, K. (2010). Evidence for opponent-channel coding of interaural time differences in human auditory cortex. Journal of Neurophysiology, 104, 1997–2007.CrossRefPubMedPubMedCentral
go back to reference Magosso, E., Cona, F., & Ursino, M. (2013). A neural network model can explain ventriloquism aftereffect and its generalization across sound frequencies. BioMed Research International, 2013, 475427.CrossRefPubMedPubMedCentral Magosso, E., Cona, F., & Ursino, M. (2013). A neural network model can explain ventriloquism aftereffect and its generalization across sound frequencies. BioMed Research International, 2013, 475427.CrossRefPubMedPubMedCentral
go back to reference Maiworm, M., Bellantoni, M., Spence, C., & Röder, B. (2012). When emotional valence modulates audiovisual integration. Attention Perception and Psychophysics, 74, 1302–1311.CrossRef Maiworm, M., Bellantoni, M., Spence, C., & Röder, B. (2012). When emotional valence modulates audiovisual integration. Attention Perception and Psychophysics, 74, 1302–1311.CrossRef
go back to reference McAlpine, D., & Grothe, B. (2003). Sound localization and delay lines—do mammals fit the model? Trends in Neurosciences, 26, 347–350.CrossRefPubMed McAlpine, D., & Grothe, B. (2003). Sound localization and delay lines—do mammals fit the model? Trends in Neurosciences, 26, 347–350.CrossRefPubMed
go back to reference Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.CrossRefPubMed Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.CrossRefPubMed
go back to reference Miller, L. M., & Recanzone, G. H. (2009). Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy of Sciences of the USA, 106, 5931–5935.CrossRefPubMed Miller, L. M., & Recanzone, G. H. (2009). Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy of Sciences of the USA, 106, 5931–5935.CrossRefPubMed
go back to reference Mondor, T. A., Zatorre, R. J., & Terrio, N. A. (1998). Constraints on the selection of auditory information. Journal of Experimental Psychology Human Perception and Performance, 24, 66–79.CrossRef Mondor, T. A., Zatorre, R. J., & Terrio, N. A. (1998). Constraints on the selection of auditory information. Journal of Experimental Psychology Human Perception and Performance, 24, 66–79.CrossRef
go back to reference Mullette-Gillman, O. A., Cohen, Y. E., & Groh, J. M. (2005). Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. Journal of Neurophysiology, 94, 2331–2352.CrossRefPubMed Mullette-Gillman, O. A., Cohen, Y. E., & Groh, J. M. (2005). Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. Journal of Neurophysiology, 94, 2331–2352.CrossRefPubMed
go back to reference Phillips, D. P., & Hall, S. E. (2005). Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hearing Research, 202, 188–199.CrossRefPubMed Phillips, D. P., & Hall, S. E. (2005). Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hearing Research, 202, 188–199.CrossRefPubMed
go back to reference Radeau, M., & Bertelson, P. (1974). The after-effects of ventriloquism. Quarterly Journal of Experimental Psychology, 26, 63–71.CrossRefPubMed Radeau, M., & Bertelson, P. (1974). The after-effects of ventriloquism. Quarterly Journal of Experimental Psychology, 26, 63–71.CrossRefPubMed
go back to reference Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the USA, 95, 869–875.CrossRefPubMed Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the USA, 95, 869–875.CrossRefPubMed
go back to reference Recanzone, G. H., & Sutter, M. L. (2008). The biological basis of audition. Annual Review of Psychology, 59, 119–142.CrossRefPubMed Recanzone, G. H., & Sutter, M. L. (2008). The biological basis of audition. Annual Review of Psychology, 59, 119–142.CrossRefPubMed
go back to reference Roseboom, W., & Arnold, D. H. (2011). Twice upon a time: Multiple concurrent temporal recalibrations of audiovisual speech. Psychological Science, 22, 872–877.CrossRefPubMed Roseboom, W., & Arnold, D. H. (2011). Twice upon a time: Multiple concurrent temporal recalibrations of audiovisual speech. Psychological Science, 22, 872–877.CrossRefPubMed
go back to reference Roseboom, W., Kawabe, T., & Nishida, S. (2013). Audio-visual temporal recalibration can be constrained by content cues regardless of spatial overlap. Frontiers in Psychology, 4, 189.CrossRefPubMedPubMedCentral Roseboom, W., Kawabe, T., & Nishida, S. (2013). Audio-visual temporal recalibration can be constrained by content cues regardless of spatial overlap. Frontiers in Psychology, 4, 189.CrossRefPubMedPubMedCentral
go back to reference Sarlat, L., Warusfel, O., & Viaud-Delmon, I. (2006). Ventriloquism aftereffects occur in the rear hemisphere. Neuroscience Letters, 404, 324–329.CrossRefPubMed Sarlat, L., Warusfel, O., & Viaud-Delmon, I. (2006). Ventriloquism aftereffects occur in the rear hemisphere. Neuroscience Letters, 404, 324–329.CrossRefPubMed
go back to reference Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12, 411–417.CrossRefPubMed Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12, 411–417.CrossRefPubMed
go back to reference Shams, L., Wozny, D. R., Kim, R., & Seitz, A. R. (2011). Influences of multisensory experience on subsequent unisensory processing. Frontiers in Psychology, 2, 264.CrossRefPubMedPubMedCentral Shams, L., Wozny, D. R., Kim, R., & Seitz, A. R. (2011). Influences of multisensory experience on subsequent unisensory processing. Frontiers in Psychology, 2, 264.CrossRefPubMedPubMedCentral
go back to reference Shrem, T., & Deouell, L. Y. (2014). Frequency-dependent auditory space representation in the human planum temporale. Frontiers in Human Neuroscience, 8, 524.CrossRefPubMedPubMedCentral Shrem, T., & Deouell, L. Y. (2014). Frequency-dependent auditory space representation in the human planum temporale. Frontiers in Human Neuroscience, 8, 524.CrossRefPubMedPubMedCentral
go back to reference Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. NeuroReport, 12, 7–10.CrossRefPubMed Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. NeuroReport, 12, 7–10.CrossRefPubMed
go back to reference Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent neural populations in the auditory cortex. PLoS Biology, 3, e78.CrossRefPubMedPubMedCentral Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent neural populations in the auditory cortex. PLoS Biology, 3, e78.CrossRefPubMedPubMedCentral
go back to reference Stricanne, B., Andersen, R. A., & Mazzoni, P. (1996). Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. Journal of Neurophysiology, 76, 2071–2076.CrossRefPubMed Stricanne, B., Andersen, R. A., & Mazzoni, P. (1996). Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. Journal of Neurophysiology, 76, 2071–2076.CrossRefPubMed
go back to reference Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14, 400–410.CrossRefPubMedPubMedCentral Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14, 400–410.CrossRefPubMedPubMedCentral
go back to reference Tardif, E., Spierer, L., Clarke, S., & Murray, M. M. (2008). Interactions between auditory ‘what’ and ‘where’ pathways revealed by enhanced near-threshold discrimination of frequency and position. Neuropsychologia, 46, 958–966.CrossRefPubMed Tardif, E., Spierer, L., Clarke, S., & Murray, M. M. (2008). Interactions between auditory ‘what’ and ‘where’ pathways revealed by enhanced near-threshold discrimination of frequency and position. Neuropsychologia, 46, 958–966.CrossRefPubMed
go back to reference Van der Burg, E., Awh, E., & Olivers, C. N. L. (2013). The capacity of audiovisual integration is limited to one item. Psychological Science, 24, 345–351.CrossRefPubMedPubMedCentral Van der Burg, E., Awh, E., & Olivers, C. N. L. (2013). The capacity of audiovisual integration is limited to one item. Psychological Science, 24, 345–351.CrossRefPubMedPubMedCentral
go back to reference Vigneault-MacLean, B. K., Hall, S. E., & Phillips, D. P. (2007). The effects of lateralized adaptors on lateral position judgements of tones within and across frequency channels. Hearing Research, 224, 93–100.CrossRefPubMed Vigneault-MacLean, B. K., Hall, S. E., & Phillips, D. P. (2007). The effects of lateralized adaptors on lateral position judgements of tones within and across frequency channels. Hearing Research, 224, 93–100.CrossRefPubMed
go back to reference Werner-Reiss, U., Kelly, K. A., Trause, A. S., Underhill, A. M., & Groh, J. M. (2003). Eye position affects activity in primary auditory cortex of primates. Current Biology, 13, 554–562.CrossRefPubMed Werner-Reiss, U., Kelly, K. A., Trause, A. S., Underhill, A. M., & Groh, J. M. (2003). Eye position affects activity in primary auditory cortex of primates. Current Biology, 13, 554–562.CrossRefPubMed
go back to reference Woods, T. M., & Recanzone, G. H. (2004). Visually induced plasticity of auditory spatial perception in macaques. Current Biology, 14, 1559–1564.CrossRefPubMed Woods, T. M., & Recanzone, G. H. (2004). Visually induced plasticity of auditory spatial perception in macaques. Current Biology, 14, 1559–1564.CrossRefPubMed
go back to reference Wozny, D. R., & Shams, L. (2011). Recalibration of auditory space following milliseconds of cross-modal discrepancy. Journal of Neuroscience, 31, 4607–4612.CrossRefPubMed Wozny, D. R., & Shams, L. (2011). Recalibration of auditory space following milliseconds of cross-modal discrepancy. Journal of Neuroscience, 31, 4607–4612.CrossRefPubMed
go back to reference Zaidel, A., Turner, A. H., & Angelaki, D. E. (2011). Multisensory calibration is independent of cue reliability. Journal of Neuroscience, 31, 13949–13962.CrossRefPubMed Zaidel, A., Turner, A. H., & Angelaki, D. E. (2011). Multisensory calibration is independent of cue reliability. Journal of Neuroscience, 31, 13949–13962.CrossRefPubMed
go back to reference Zierul, B., Röder, B., Tempelmann, C., Bruns, P., & Noesselt, T. (2017). The role of auditory cortex in the spatial ventriloquism aftereffect. NeuroImage, 162, 257–268.CrossRefPubMed Zierul, B., Röder, B., Tempelmann, C., Bruns, P., & Noesselt, T. (2017). The role of auditory cortex in the spatial ventriloquism aftereffect. NeuroImage, 162, 257–268.CrossRefPubMed
go back to reference Zwiers, M. P., van Opstal, A. J., & Paige, G. D. (2003). Plasticity in human sound localization induced by compressed spatial vision. Nature Neuroscience, 6, 175–181.CrossRefPubMed Zwiers, M. P., van Opstal, A. J., & Paige, G. D. (2003). Plasticity in human sound localization induced by compressed spatial vision. Nature Neuroscience, 6, 175–181.CrossRefPubMed
Metagegevens
Titel
Spatial and frequency specificity of the ventriloquism aftereffect revisited
Auteurs
Patrick Bruns
Brigitte Röder
Publicatiedatum
28-12-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 7/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0965-4