Skip to main content
Top
Gepubliceerd in:

03-12-2018 | Original Article

SNARC-like compatibility effects for physical and phenomenal magnitudes: a study on visual illusions

Auteurs: Valter Prpic, Alessandro Soranzo, Ilaria Santoro, Carlo Fantoni, Alessandra Galmonte, Tiziano Agostini, Mauro Murgia

Gepubliceerd in: Psychological Research | Uitgave 4/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Both numerical and non-numerical magnitudes elicit similar Spatial-Numerical Association of Response Codes (SNARC) effects, with small magnitudes associated with left hand responses and large magnitudes associated with right hand responses (Dehaene et al., J Exp Psychol Gen 122(3), 371, 1993). In the present study, we investigated whether the phenomenal size of visual illusions elicits the same SNARC-like effect revealed for the physical size of pictorial surfaces. Four experiments were conducted by using the Delboeuf illusion (Experiment 1) and the Kanizsa triangle illusion (Experiments 2, 3 and 4). Experiment 1 suggests the presence of a SNARC-like compatibility effect for the physical size of the inducers, while this effect was not revealed for the phenomenal size of the induced elements, possibly masked by a stronger effect of the inducers. A SNARC-like effect for the phenomenal size of the Kanizsa triangle was revealed when participants directly compared the size of the triangles (Experiment 4). Conversely, when participants performed an indirect task (orientation judgment), the SNARC-like effect was present neither for the illusory nor for the physical displays (Experiments 2 and 3). The effect revealed for the size of illusory triangles was comparable to that of real triangles with physical contours, suggesting that both phenomenal and physical magnitudes similarly elicit SNARC-like effects.
Voetnoten
1
The displays shown in Fig. 1 are in the large inducers condition.
 
Literatuur
go back to reference Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679–685.PubMed Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679–685.PubMed
go back to reference Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1525), 1831–1840.PubMed Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1525), 1831–1840.PubMed
go back to reference Coren, S., Porac, C., & Theodor, L. H. (1986). The effects of perceptual set on the shape and apparent depth of subjective contours. Perception & Psychophysics, 39(5), 327–333. Coren, S., Porac, C., & Theodor, L. H. (1986). The effects of perceptual set on the shape and apparent depth of subjective contours. Perception & Psychophysics, 39(5), 327–333.
go back to reference Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371.
go back to reference Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMed Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMed
go back to reference Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626.PubMed Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626.PubMed
go back to reference Delboeuf, J. (1865). Seconde note sur de nouvelles illusions d’optique: Essai d’une théorie psychophysique de la manière dont l’oeil apprécie les grandeurs. Bulletins de l’Académie Royale des Sciences, lettres et Beaux-arts de Belgique, 20, 70–97. Delboeuf, J. (1865). Seconde note sur de nouvelles illusions d’optique: Essai d’une théorie psychophysique de la manière dont l’oeil apprécie les grandeurs. Bulletins de l’Académie Royale des Sciences, lettres et Beaux-arts de Belgique, 20, 70–97.
go back to reference Ebbinghaus, H. (1902). Grundzüge der Psychologie, Vol. 1. Leipzig: Veit. Ebbinghaus, H. (1902). Grundzüge der Psychologie, Vol. 1. Leipzig: Veit.
go back to reference Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110. Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110.
go back to reference Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.PubMed Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.PubMed
go back to reference Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12(3), 415–423.PubMed Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12(3), 415–423.PubMed
go back to reference Franz, V. H. (2001). Action does not resist visual illusions. Trends in Cognitive Sciences, 5(11), 457–459.PubMed Franz, V. H. (2001). Action does not resist visual illusions. Trends in Cognitive Sciences, 5(11), 457–459.PubMed
go back to reference Franz, V. H., & Gegenfurtner, K. R. (2008). Grasping visual illusions: Consistent data and no dissociation. Cognitive Neuropsychology, 25(7–8), 920–950.PubMed Franz, V. H., & Gegenfurtner, K. R. (2008). Grasping visual illusions: Consistent data and no dissociation. Cognitive Neuropsychology, 25(7–8), 920–950.PubMed
go back to reference Franz, V. H., Gegenfurtner, K. R., Bülthoff, H. H., & Fahle, M. (2000). Grasping visual illusions: No evidence for a dissociation between perception and action. Psychological Science, 11(1), 20–25.PubMed Franz, V. H., Gegenfurtner, K. R., Bülthoff, H. H., & Fahle, M. (2000). Grasping visual illusions: No evidence for a dissociation between perception and action. Psychological Science, 11(1), 20–25.PubMed
go back to reference Fumarola, A., Prpic, V., Fornasier, D., Sartoretto, F., Agostini, T., & Umiltà, C. (2016). The spatial representation of Angles. Perception, 45(11), 1320–1330.PubMed Fumarola, A., Prpic, V., Fornasier, D., Sartoretto, F., Agostini, T., & Umiltà, C. (2016). The spatial representation of Angles. Perception, 45(11), 1320–1330.PubMed
go back to reference Fumarola, A., Prpic, V., Pos, D., Murgia, O., Umiltà, M.C., & Agostini, T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76(3), 759–765. Fumarola, A., Prpic, V., Pos, D., Murgia, O., Umiltà, M.C., & Agostini, T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76(3), 759–765.
go back to reference Ganel, T., Tanzer, M., & Goodale, M. A. (2008). A double dissociation between action and perception in the context of visual illusions: Opposite effects of real and illusory size. Psychological Science, 19(3), 221–225.PubMed Ganel, T., Tanzer, M., & Goodale, M. A. (2008). A double dissociation between action and perception in the context of visual illusions: Opposite effects of real and illusory size. Psychological Science, 19(3), 221–225.PubMed
go back to reference Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32.PubMed Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32.PubMed
go back to reference Goodale, M. A., Meenan, J. P., Bülthoff, H. H., Nicolle, D. A., Murphy, K. J., & Racicot, C. I. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4(7), 604–610.PubMed Goodale, M. A., Meenan, J. P., Bülthoff, H. H., Nicolle, D. A., Murphy, K. J., & Racicot, C. I. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4(7), 604–610.PubMed
go back to reference Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154–156.PubMed Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154–156.PubMed
go back to reference Haffenden, A. M., Schiff, K. C., & Goodale, M. A. (2001). The dissociation between perception and action in the Ebbinghaus illusion: Nonillusory effects of pictorial cues on grasp. Current Biology, 11(3), 177–181.PubMed Haffenden, A. M., Schiff, K. C., & Goodale, M. A. (2001). The dissociation between perception and action in the Ebbinghaus illusion: Nonillusory effects of pictorial cues on grasp. Current Biology, 11(3), 177–181.PubMed
go back to reference Hartmann, M., & Mast, F. W. (2017). Loudness counts: Interactions between loudness, number magnitude, and space. The Quarterly Journal of Experimental Psychology, 70(7), 1305–1322.PubMed Hartmann, M., & Mast, F. W. (2017). Loudness counts: Interactions between loudness, number magnitude, and space. The Quarterly Journal of Experimental Psychology, 70(7), 1305–1322.PubMed
go back to reference Kanizsa, G. (1955). Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di psicologia, 49(1), 7–30. Kanizsa, G. (1955). Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di psicologia, 49(1), 7–30.
go back to reference Kaufman, L., & Rock, I. (1962). The moon illusion. Scientific American, 207(1), 120–131.PubMed Kaufman, L., & Rock, I. (1962). The moon illusion. Scientific American, 207(1), 120–131.PubMed
go back to reference Koffka, K. (1963). Principles of Gestalt psychology. New York: Harcourt, Brace & World. Koffka, K. (1963). Principles of Gestalt psychology. New York: Harcourt, Brace & World.
go back to reference Lidji, P., Kolinsky, R., Lochy, A., & Morais, J. (2007). Spatial associations for musical stimuli: A piano in the head? Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1189.PubMed Lidji, P., Kolinsky, R., Lochy, A., & Morais, J. (2007). Spatial associations for musical stimuli: A piano in the head? Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1189.PubMed
go back to reference Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149.PubMed Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149.PubMed
go back to reference Meyer, G. E., & Petry, S. (1987). Top-down and bottom-up: The illusory contour as a microcosm of issues in perception. In S. Petry & G. E. Meyer (Eds.), The perception of illusory contours (pp. 3–20). New York: Springer. Meyer, G. E., & Petry, S. (1987). Top-down and bottom-up: The illusory contour as a microcosm of issues in perception. In S. Petry & G. E. Meyer (Eds.), The perception of illusory contours (pp. 3–20). New York: Springer.
go back to reference Mitchell, T., Bull, R., & Cleland, A. A. (2012). Implicit response-irrelevant number information triggers the SNARC effect: Evidence using a neural overlap paradigm. The Quarterly Journal of Experimental Psychology, 65(10), 1945–1961.PubMed Mitchell, T., Bull, R., & Cleland, A. A. (2012). Implicit response-irrelevant number information triggers the SNARC effect: Evidence using a neural overlap paradigm. The Quarterly Journal of Experimental Psychology, 65(10), 1945–1961.PubMed
go back to reference Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187.PubMed Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187.PubMed
go back to reference Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305.PubMed Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305.PubMed
go back to reference Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416.PubMed Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416.PubMed
go back to reference Prpic, V., & Domijan, D. (2018). Linear representation of pitch height in the SMARC effect. Psychological Topics (in press). Prpic, V., & Domijan, D. (2018). Linear representation of pitch height in the SMARC effect. Psychological Topics (in press).
go back to reference Prpic, V., Fumarola, A., De Tommaso, M., Baldassi, G., & Agostini, T. (2013). A SNARC-like effect for music tempo. Review of Psychology, 20(1–2), 47–51. Prpic, V., Fumarola, A., De Tommaso, M., Baldassi, G., & Agostini, T. (2013). A SNARC-like effect for music tempo. Review of Psychology, 20(1–2), 47–51.
go back to reference Prpic, V., Fumarola, A., De Tommaso, M., Luccio, R., Murgia, M., & Agostini, T. (2016). Separate Mechanisms for Magnitude and Order Processing in the Spatial-Numerical Association of Response Codes (SNARC) Effect: The Strange Case of Musical Note Values. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1241.PubMed Prpic, V., Fumarola, A., De Tommaso, M., Luccio, R., Murgia, M., & Agostini, T. (2016). Separate Mechanisms for Magnitude and Order Processing in the Spatial-Numerical Association of Response Codes (SNARC) Effect: The Strange Case of Musical Note Values. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1241.PubMed
go back to reference Ren, P., Nicholls, M. E., Ma, Y., & Chen, L. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. PLoS One, 6(8), e23553.PubMedPubMedCentral Ren, P., Nicholls, M. E., Ma, Y., & Chen, L. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. PLoS One, 6(8), e23553.PubMedPubMedCentral
go back to reference Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 95, 437–444. Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 95, 437–444.
go back to reference Rock, I., & Kaufman, L. (1962). The moon illusion, II: The moon’s apparent size is a function of the presence or absence of terrain. Science, 136(3521), 1023–1031.PubMed Rock, I., & Kaufman, L. (1962). The moon illusion, II: The moon’s apparent size is a function of the presence or absence of terrain. Science, 136(3521), 1023–1031.PubMed
go back to reference Rusconi, E., Kwan, B., Giordano, B. L., Umilta, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99(2), 113–129.PubMed Rusconi, E., Kwan, B., Giordano, B. L., Umilta, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99(2), 113–129.PubMed
go back to reference Smeets, J. B., & Brenner, E. (2006). 10 years of illusions. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1501.PubMed Smeets, J. B., & Brenner, E. (2006). 10 years of illusions. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1501.PubMed
go back to reference Titchener, E. B. (1905). Experimental psychology: A manual of laboratory practice (Vol. 2). London: Macmillan. Titchener, E. B. (1905). Experimental psychology: A manual of laboratory practice (Vol. 2). London: Macmillan.
go back to reference Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4, 435.PubMedPubMedCentral Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4, 435.PubMedPubMedCentral
go back to reference Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.PubMed Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.PubMed
go back to reference Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525. Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525.
Metagegevens
Titel
SNARC-like compatibility effects for physical and phenomenal magnitudes: a study on visual illusions
Auteurs
Valter Prpic
Alessandro Soranzo
Ilaria Santoro
Carlo Fantoni
Alessandra Galmonte
Tiziano Agostini
Mauro Murgia
Publicatiedatum
03-12-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 4/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-1125-1

Andere artikelen Uitgave 4/2020

Psychological Research 4/2020 Naar de uitgave