Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Quality of Life Research 6/2008

01-08-2008

Separating gains and losses in health when calculating the minimum important difference for mapped utility measures

Auteurs: Michael B. Nichol, Joshua D. Epstein

Gepubliceerd in: Quality of Life Research | Uitgave 6/2008

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Objective

To estimate the minimum important difference (MID) for a variety of mapped utility measures and to determine whether patients perceiving gains and losses in health status should be treated equally when calculating the MID.

Methods

A longitudinal study within a California managed care population of 6,932 patients was retrospectively analyzed. Utilities were derived from the SF-36 short-form health survey using multiple validated mapping methods. Absolute utility changes for patients who considered their current health as ‘somewhat better’ or ‘somewhat worse’ in the prior year were compared to determine if gains and losses in utility values could be combined. The MIDs were calculated and compared using anchor- and distribution-based methods.

Results

Two thousand one hundred patients reported ‘somewhat better’ or ‘somewhat worse’ health in the first year. When combining these patients, the average MID for all mapped utility measures was 0.03 (SD = 0.1), a magnitude similar to that identified by Walters. However, when separated, the mean MID utility change for those reporting ‘somewhat better’ and ‘somewhat worse’ health was 0.02 (SD = 0.1) and −0.06 (SD = 0.1), respectively (P < 0.0001).

Conclusions

Researchers should consider the effects of combining gains and losses when determining utility MID values.
Literatuur
2.
go back to reference Torrance, G. W., & Feeny, D. (1989). Utilities and quality-adjusted life years. International Journal of Technology Assessment in Health Care, 5, 559–575. PubMed Torrance, G. W., & Feeny, D. (1989). Utilities and quality-adjusted life years. International Journal of Technology Assessment in Health Care, 5, 559–575. PubMed
3.
go back to reference Gold, M. R., Siegel, J. E., Rusell, L. B., & Weinstein, M. C. (1996). Cost-effectiveness in health and medicine. Oxford: Oxford University Press. Gold, M. R., Siegel, J. E., Rusell, L. B., & Weinstein, M. C. (1996). Cost-effectiveness in health and medicine. Oxford: Oxford University Press.
4.
6.
go back to reference Revicki, D. A., Cella, D., Hays, R. D., Sloan, J. A., Lenderking, W. R., & Aaronson, N. K. (2006). Responsiveness and minimal important differences for patient reported outcomes. Health and Quality of Life Outcomes, 4, 70–74. doi: 10.​1186/​1477-7525-4-70. PubMedCrossRef Revicki, D. A., Cella, D., Hays, R. D., Sloan, J. A., Lenderking, W. R., & Aaronson, N. K. (2006). Responsiveness and minimal important differences for patient reported outcomes. Health and Quality of Life Outcomes, 4, 70–74. doi: 10.​1186/​1477-7525-4-70. PubMedCrossRef
8.
go back to reference Wyrwich, K. W., Tierney, W., & Wolinsky, F. D. (1999). Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. Journal of Clinical Epidemiology, 52, 861–873. doi: 10.​1016/​S0895-4356(99)00071-2. PubMedCrossRef Wyrwich, K. W., Tierney, W., & Wolinsky, F. D. (1999). Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. Journal of Clinical Epidemiology, 52, 861–873. doi: 10.​1016/​S0895-4356(99)00071-2. PubMedCrossRef
9.
go back to reference Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edn.). Hillsdale, NJ: Lawrence Erlbaum. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edn.). Hillsdale, NJ: Lawrence Erlbaum.
14.
go back to reference Guyatt, G. H., Osoba, D., Wu, A. W., Wywrich, K. W., & Norman, G. R.; Clinical Significance Consensus Meeting Group. (2002). Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77(4), 371–383. PubMedCrossRef Guyatt, G. H., Osoba, D., Wu, A. W., Wywrich, K. W., & Norman, G. R.; Clinical Significance Consensus Meeting Group. (2002). Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77(4), 371–383. PubMedCrossRef
20.
go back to reference Walters, S. J., & Brazier, J. E. (2003). What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. Health and Quality of Life Outcomes, 1, 4–11. doi: 10.​1186/​1477-7525-1-4. PubMedCrossRef Walters, S. J., & Brazier, J. E. (2003). What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. Health and Quality of Life Outcomes, 1, 4–11. doi: 10.​1186/​1477-7525-1-4. PubMedCrossRef
21.
go back to reference Ware, J. E., & Kosinski, M. (2001). The SF-36 physical and mental health summary scales. A manual for users of version 1, 2nd edn. Lincoln, RI: QualityMetric Incorporated. Ware, J. E., & Kosinski, M. (2001). The SF-36 physical and mental health summary scales. A manual for users of version 1, 2nd edn. Lincoln, RI: QualityMetric Incorporated.
24.
go back to reference Yost, K. J., Cella, D., Chawla, A., Holmgren, E., Eton, T., Ayanian, J. Z., West, D. W. (2005). Minimally important differences were estimated for the Functional Assessment of Cancer Therapy-Colorectal (FACT-C) instrument using a combination of distribution- and anchor-based approaches. Journal of Clinical Epidemiology, 58, 1241–1251. doi: 10.​1016/​j.​jclinepi.​2005.​07.​008. PubMedCrossRef Yost, K. J., Cella, D., Chawla, A., Holmgren, E., Eton, T., Ayanian, J. Z., West, D. W. (2005). Minimally important differences were estimated for the Functional Assessment of Cancer Therapy-Colorectal (FACT-C) instrument using a combination of distribution- and anchor-based approaches. Journal of Clinical Epidemiology, 58, 1241–1251. doi: 10.​1016/​j.​jclinepi.​2005.​07.​008. PubMedCrossRef
25.
go back to reference Pickard, A. S., Wang, Z., Walton, S. M., & Lee, T. A. (2005). Are decisions using cost-utility analyses robust to choice of SF-36/SF-12 preference-based algorithm? Health and Quality of Life Outcomes, 3, 11–19. doi: 10.​1186/​1477-7525-3-11. PubMedCrossRef Pickard, A. S., Wang, Z., Walton, S. M., & Lee, T. A. (2005). Are decisions using cost-utility analyses robust to choice of SF-36/SF-12 preference-based algorithm? Health and Quality of Life Outcomes, 3, 11–19. doi: 10.​1186/​1477-7525-3-11. PubMedCrossRef
28.
go back to reference Wyrwich, K. W., Metz, S. M., Babu, A. N., Kroenke, K., Tierney, W. M., & Wolinsky, F. D. (2002). The reliability of retrospective change assessments. Quality of Life Research, 11(7), 636. Wyrwich, K. W., Metz, S. M., Babu, A. N., Kroenke, K., Tierney, W. M., & Wolinsky, F. D. (2002). The reliability of retrospective change assessments. Quality of Life Research, 11(7), 636.
Metagegevens
Titel
Separating gains and losses in health when calculating the minimum important difference for mapped utility measures
Auteurs
Michael B. Nichol
Joshua D. Epstein
Publicatiedatum
01-08-2008
Uitgeverij
Springer Netherlands
Gepubliceerd in
Quality of Life Research / Uitgave 6/2008
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-008-9369-7