Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2014

Open Access 01-04-2014 | Meeting abstract

Running on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to running on a regular surface

Auteurs: Thorsten Sterzing, Charlotte Apps, Rui Ding, Jason Tak-Man Cheung

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2014

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Background

Irregular surface conditions, for instance, are present during trail running. Modified treadmills can be used to produce such surface conditions in a laboratory environment [1]. Gait variability on uneven shoe-surface interfaces is increased in walking [2, 3], hence the same may apply to running. This study examined the effects of an unpredictable irregular surface (UIS) on lower limb biomechanics, locomotion variability, and subjective perception during treadmill running.

Methods

Seventeen young, male, active participants ran at 8 km/h on a treadmill with predictable regular surface (PRS) and with UIS. The UIS was created by randomly attaching EVA dome shaped inserts (ط: 140 mm) of different height (10 mm and 15 mm) and hardness (40 and 70 Asker C) to the treadmill. In-shoe plantar pressures (200 Hz, Pedar X System, Novel, Germany), lower limb kinematics (200 Hz, Vicon Peak, United Kingdom), and EMG signals of five lower limb muscles (3000 Hz, Telemyo 2400 G2, Noraxon, USA) were recorded. Eight perception items were assessed subjectively (9-point Likert Scale). Biomechanical parameter mean magnitudes and mean standard deviations, as variability measure, of 16 steps were calculated. Variables were compared between surfaces by Wilcoxon signed rank tests (p<.05).

Results

Step length decreased while step frequency increased on UIS (p<.05). In-shoe pressure relative load magnitudes on UIS were increased at medial midfoot (p<.05), and decreased at lateral forefoot (p<.05). Relative load variability increased for all regions (p<.05). Runners had a flatter and less dorsiflexed foot strike (Table 1), alongside increased knee and hip flexion on UIS (p<.05). Whereas all sagittal joint angle magnitudes differed significantly, only knee and hip angles varied significantly more. Touchdown ankle inversion remained unchanged, whereas maximum eversion was significantly higher on UIS, and both were more variable (p<.05). Tibialis anterior and gastrocnemius medialis muscle activity magnitude and variability was similar, whereas peroneus longus activity was significantly increased, while not being more variable on UIS (Table 1). Subjectively, running on UIS was more challenging (p<.05).
Table 1
Magnitude (Mag) and variability (Var) of kinematic and EMG parameters, significant surface comparisons (PRS vs. UIS) indicated in bold.
 
Sagittal plane angles [deg]
Normalized muscle activity during stance [%]
 
Shoe to Surface
Shoe to Shank
Tibialis Anterior
Gastrocnemius Med
Peroneus Longus
 
Mag
Var
Mag
Var
Mag
Var
Mag
Var
Mag
Var
PRS
20.8
2.1
9.7
1.3
24.4
3.3
42.1
5.6
42.7
5.8
UIS
17.0
2.7
7.1
1.9
22.8
3.5
43.5
5.4
46.8
7.7
p-value
.001
.102
.001
.055
.149
.492
.831
.586
.025
.068

Conclusion

Runners consciously applied a more alert kinematic lower limb posture at touchdown on UIS, with lower limb position more consistent for distal sagittal joint angles. Similar muscular activity of tibialis anterior and gastrocnemius medialis indicates that general muscle activity applied was sufficient to compensate the perturbation level in this study regarding sagittal plane ankle motion. Running on UIS increased gait variability, thus stimulating enhancement of motor control patterns, resembling a positive training mechanism [4].
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
1.
go back to reference Voloshina AS, Kuo AD, Daley MA, Ferris DP: Biomechanics and energetics of walking on uneven terrain. J Exp Biol. 2013, 216: 3963-3970. 10.1242/jeb.081711.PubMedCentralCrossRefPubMed Voloshina AS, Kuo AD, Daley MA, Ferris DP: Biomechanics and energetics of walking on uneven terrain. J Exp Biol. 2013, 216: 3963-3970. 10.1242/jeb.081711.PubMedCentralCrossRefPubMed
2.
go back to reference Gates DH, Wilken JM, Scott SJ, Sinitski EH, Dingwell JB: Kinematic strategies for walking across a destabilizing rock surface. Gait Posture. 2012, 35: 36-42. 10.1016/j.gaitpost.2011.08.001.PubMedCentralCrossRefPubMed Gates DH, Wilken JM, Scott SJ, Sinitski EH, Dingwell JB: Kinematic strategies for walking across a destabilizing rock surface. Gait Posture. 2012, 35: 36-42. 10.1016/j.gaitpost.2011.08.001.PubMedCentralCrossRefPubMed
3.
go back to reference Stöggl T, Müller E: Magnitude and variation in muscle activity during walking before and after a 10-week adaptation period using unstable (MBT) shoes. Footwear Sci. 2012, 4 (2): 131-143. 10.1080/19424280.2012.683882.CrossRef Stöggl T, Müller E: Magnitude and variation in muscle activity during walking before and after a 10-week adaptation period using unstable (MBT) shoes. Footwear Sci. 2012, 4 (2): 131-143. 10.1080/19424280.2012.683882.CrossRef
Metagegevens
Titel
Running on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to running on a regular surface
Auteurs
Thorsten Sterzing
Charlotte Apps
Rui Ding
Jason Tak-Man Cheung
Publicatiedatum
01-04-2014
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2014
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-7-S1-A80

Andere artikelen bijlage 1/2014

Journal of Foot and Ankle Research 1/2014 Naar de uitgave