Skip to main content
Top
Gepubliceerd in:

23-04-2016 | Original Article

Retest reliability of the parameters of the Ratcliff diffusion model

Auteurs: Veronika Lerche, Andreas Voss

Gepubliceerd in: Psychological Research | Uitgave 3/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In the recent years, there is a growing interest to use the Ratcliff Diffusion Model (1978) for diagnostic purposes as the parameters of the model capture interindividual differences in specific cognitive processes. The parameters are estimated using reaction time data from binary classification tasks. For a potential diagnostic application of parameter values sufficient reliability is a necessary precondition. In two studies, each with two sessions separated by 1 week, the retest reliability of the diffusion model parameters was assessed. In Study 1, 105 participants completed a lexical decision task and a recognition memory task. In Study 2, 128 participants worked on an associative priming task. Results show that the reliability of the main parameters of the Ratcliff Diffusion Model (in particular of the speed of information accumulation and the threshold separation with rs > 0.70 for all three tasks) is satisfying. Besides, we analyzed the influence of the number of trials on the retest reliability using different estimation methods (Kolmogorov–Smirnov, Maximum Likelihood, Chi-square and EZ) and both empirical and simulated datasets.
Voetnoten
1
Noteworthy, in unpublished studies from our lab, we failed to find correlations of threshold separation with self-reported impulsivity using standard speeded response time tasks (cf. also Stahl et al., 2014). However, when using more difficult tasks that required a long duration of information accumulation (RT > 5 s) weak to moderate correlations emerged.
 
2
Words had frequencies below 5 per million (CELEX; Baayen, Piepenbrock, & Gulikers, 1995) and—at the same time—a frequency class of 14 or 15 (online dictionary project of the university of Leipzig in November 2014, see http://​wortschatz.​unileipzig.​de), indicating that the word “der” (“the”) is used 214 or 215 times as often in German language as our stimuli.
 
3
As EZ cannot be applied to datasets with an accuracy rate of 100 %, we applied an edge correction method which has also been used by Wagenmakers et al. (2007): \({\text{accuracy}} = 1 - \frac{1}{2 \times n}\), with n being the number of trials. Similarly, in Study 3 we additionally used a correction for a few datasets due to an observed accuracy of 50 % in one condition (\({\text{accuracy}} = 0.5 + \frac{1}{2 \times n}\)).
 
4
Based on the findings by Voss et al. (2013), we did not expect the d-parameter of the diffusion model (Voss et al., 2010) to be influenced by the prime type. Besides, estimation of this parameter requires very high trial numbers (Voss et al., 2010).
 
5
Results for non-word targets are also presented in Table 3. Note, that the findings are similar to those reported by Voss et al. (2013).
 
6
In each condition, fast-dm requires at least 10 trials (independent of the type of response) for ML and KS estimation and 12 trials (of the same response) for CS estimation (Voss et al., 2015). Thus, for the data of the APT due to the higher number of conditions no retest coefficients could be computed for 32 trials and for CS neither for 48 trials.
 
7
Construct-samples is part of fast-dm (Voss et al., 2015). For the simulation of datasets we used a high precision setting of p = 4.
 
8
Note that, as already mentioned, it is possible that the contamination in the empiric data is different from the type and amount of contamination that we assumed for the simulation of data. Thus, it could be that the estimation of the drift rate suffers less from contamination than for example the estimation of t 0 and that not (only) the stability of the parameters is responsible for the different distances between the lines of simulated and empiric data. Our study, thus, only allows getting an approximate idea of the state proportions. A clear disentangling of state and trait proportions would require larger samples of participants and data points.
 
9
Results are very similar for Session 2.
 
Literatuur
go back to reference Allen, P. A., Lien, M.-C., Ruthruff, E., & Voss, A. (2014). Multitasking and aging: Do older adults benefit from performing a highly practiced task? Experimental Aging Research, 40(3), 280–307.PubMedCrossRef Allen, P. A., Lien, M.-C., Ruthruff, E., & Voss, A. (2014). Multitasking and aging: Do older adults benefit from performing a highly practiced task? Experimental Aging Research, 40(3), 280–307.PubMedCrossRef
go back to reference Arnold, N. R., Bröder, A., & Bayen, U. J. (2015). Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychological Research, 79(5), 882–898. doi:10.1007/s00426-014-0608-y.PubMedCrossRef Arnold, N. R., Bröder, A., & Bayen, U. J. (2015). Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychological Research, 79(5), 882–898. doi:10.​1007/​s00426-014-0608-y.PubMedCrossRef
go back to reference Aschenbrenner, A. J., Balota, D. A., Gordon, B. A., Ratcliff, R., & Morris, J. C. (2016). A diffusion model analysis of episodic recognition in preclinical individuals with a family history for Alzheimer’s disease: The adult children study. Neuropsychology, 30(2), 225–238. doi:10.1037/neu0000222.PubMedPubMedCentralCrossRef Aschenbrenner, A. J., Balota, D. A., Gordon, B. A., Ratcliff, R., & Morris, J. C. (2016). A diffusion model analysis of episodic recognition in preclinical individuals with a family history for Alzheimer’s disease: The adult children study. Neuropsychology, 30(2), 225–238. doi:10.​1037/​neu0000222.PubMedPubMedCentralCrossRef
go back to reference Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (CD-ROM). Linguistic Data Consortium. Philadelphia, PA: University of Pennsylvania. Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (CD-ROM). Linguistic Data Consortium. Philadelphia, PA: University of Pennsylvania.
go back to reference Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., & Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39(3), 445–459.PubMedCrossRef Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., & Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39(3), 445–459.PubMedCrossRef
go back to reference Bock, O., Baetge, I., & Nicklisch, A. (2014). hroot: Hamburg registration and organization online tool. European Economic Review, 71, 117–120.CrossRef Bock, O., Baetge, I., & Nicklisch, A. (2014). hroot: Hamburg registration and organization online tool. European Economic Review, 71, 117–120.CrossRef
go back to reference Borkenau, P., & Ostendorf, F. (2008). NEO-Fünf-Faktoren Inventar: nach Costa u. McCrae; NEO-FFI: Hogrefe, Verlag f. Psychologie. Borkenau, P., & Ostendorf, F. (2008). NEO-Fünf-Faktoren Inventar: nach Costa u. McCrae; NEO-FFI: Hogrefe, Verlag f. Psychologie.
go back to reference Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion model decomposition of the practice effect. Psychonomic Bulletin & Review, 16(6), 1026–1036. doi:10.3758/16.6.1026.CrossRef Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion model decomposition of the practice effect. Psychonomic Bulletin & Review, 16(6), 1026–1036. doi:10.​3758/​16.​6.​1026.CrossRef
go back to reference Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: the implicit association test. Journal of Personality and Social Psychology, 74(6), 1464.PubMedCrossRef Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: the implicit association test. Journal of Personality and Social Psychology, 74(6), 1464.PubMedCrossRef
go back to reference Guilford, J. P. (1954). Psychometric methods (2nd ed.). New York: McGraw-Hill. Guilford, J. P. (1954). Psychometric methods (2nd ed.). New York: McGraw-Hill.
go back to reference Klauer, K. C., & Dittrich, K. (2010). From sunshine to double arrows: An evaluation window account of negative compatibility effects. Journal of Experimental Psychology: General, 139(3), 490.CrossRef Klauer, K. C., & Dittrich, K. (2010). From sunshine to double arrows: An evaluation window account of negative compatibility effects. Journal of Experimental Psychology: General, 139(3), 490.CrossRef
go back to reference Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Gainesville, FL. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Gainesville, FL.
go back to reference Leite, F. P., & Ratcliff, R. (2011). What cognitive processes drive response biases? A diffusion model analysis. Judgment and Decision Making, 6(7), 651–687. Leite, F. P., & Ratcliff, R. (2011). What cognitive processes drive response biases? A diffusion model analysis. Judgment and Decision Making, 6(7), 651–687.
go back to reference Lerche, V., & Voss, A. (2016). Model complexity in diffusion modeling: Benefits of making the model more parsimonious. Manuscript submitted for publication. Lerche, V., & Voss, A. (2016). Model complexity in diffusion modeling: Benefits of making the model more parsimonious. Manuscript submitted for publication.
go back to reference Lerche, V., Voss, A., & Nagler, M. (2015). How Many Trials are Required for Robust Parameter Estimation in Diffusion Modeling? A Comparison of Different Estimation Algorithms. Manuscript submitted for publication. Lerche, V., Voss, A., & Nagler, M. (2015). How Many Trials are Required for Robust Parameter Estimation in Diffusion Modeling? A Comparison of Different Estimation Algorithms. Manuscript submitted for publication.
go back to reference Metin, B., Roeyers, H., Wiersema, J. R., van der Meere, J. J., Thompson, M., & Sonuga-Barke, E. (2013). ADHD performance reflects inefficient but not impulsive information processing: A diffusion model analysis. Neuropsychology, 27(2), 193–200. doi:10.1037/a0031533.PubMedCrossRef Metin, B., Roeyers, H., Wiersema, J. R., van der Meere, J. J., Thompson, M., & Sonuga-Barke, E. (2013). ADHD performance reflects inefficient but not impulsive information processing: A diffusion model analysis. Neuropsychology, 27(2), 193–200. doi:10.​1037/​a0031533.PubMedCrossRef
go back to reference Neumann, R., & Strack, F. (2000). Approach and avoidance: the influence of proprioceptive and exteroceptive cues on encoding of affective information. Journal of Personality and Social Psychology, 79(1), 39.PubMedCrossRef Neumann, R., & Strack, F. (2000). Approach and avoidance: the influence of proprioceptive and exteroceptive cues on encoding of affective information. Journal of Personality and Social Psychology, 79(1), 39.PubMedCrossRef
go back to reference Pe, M. L., Vandekerckhove, J., & Kuppens, P. (2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13(4), 739–747. doi:10.1037/a0031628.PubMedCrossRef Pe, M. L., Vandekerckhove, J., & Kuppens, P. (2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13(4), 739–747. doi:10.​1037/​a0031628.PubMedCrossRef
go back to reference Petrov, A. A., Van Horn, N. M., & Ratcliff, R. (2011). Dissociable perceptual-learning mechanisms revealed by diffusion-model analysis. Psychonomic Bulletin & Review, 18(3), 490–497. doi:10.3758/s13423-011-0079-8 CrossRef Petrov, A. A., Van Horn, N. M., & Ratcliff, R. (2011). Dissociable perceptual-learning mechanisms revealed by diffusion-model analysis. Psychonomic Bulletin & Review, 18(3), 490–497. doi:10.​3758/​s13423-011-0079-8 CrossRef
go back to reference Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision, 2(4), 237–279. doi:10.1037/dec0000030.CrossRef Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision, 2(4), 237–279. doi:10.​1037/​dec0000030.CrossRef
go back to reference Ratcliff, R., & McKoon, G. (2015). Aging effects in item and associative recognition memory for pictures and words. Psychology and Aging, 30(3), 669–674.PubMedPubMedCentralCrossRef Ratcliff, R., & McKoon, G. (2015). Aging effects in item and associative recognition memory for pictures and words. Psychology and Aging, 30(3), 669–674.PubMedPubMedCentralCrossRef
go back to reference Ratcliff, R., Spieler, D., & McKoon, G. (2000). Explicitly modeling the effects of aging on response time. Psychonomic Bulletin & Review, 7(1), 1–25.CrossRef Ratcliff, R., Spieler, D., & McKoon, G. (2000). Explicitly modeling the effects of aging on response time. Psychonomic Bulletin & Review, 7(1), 1–25.CrossRef
go back to reference Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004b). A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology and Aging, 19(2), 278.PubMedPubMedCentralCrossRef Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004b). A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology and Aging, 19(2), 278.PubMedPubMedCentralCrossRef
go back to reference Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16(2), 323.PubMedCrossRef Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16(2), 323.PubMedCrossRef
go back to reference Ratcliff, R., Thapar, A., & McKoon, G. (2004c). A diffusion model analysis of the effects of aging on recognition memory. Journal of Memory and Language, 50(4), 408–424.CrossRef Ratcliff, R., Thapar, A., & McKoon, G. (2004c). A diffusion model analysis of the effects of aging on recognition memory. Journal of Memory and Language, 50(4), 408–424.CrossRef
go back to reference Ratcliff, R., Thapar, A., & McKoon, G. (2011). Effects of aging and IQ on item and associative memory. Journal of Experimental Psychology: General, 140(3), 464.CrossRef Ratcliff, R., Thapar, A., & McKoon, G. (2011). Effects of aging and IQ on item and associative memory. Journal of Experimental Psychology: General, 140(3), 464.CrossRef
go back to reference Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481. doi:10.3758/bf03196302.CrossRef Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481. doi:10.​3758/​bf03196302.CrossRef
go back to reference Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. doi:10.1037/0096-3445.136.3.414.CrossRef Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. doi:10.​1037/​0096-3445.​136.​3.​414.CrossRef
go back to reference Schmitz, F., & Voss, A. (2012). Decomposing task-switching costs with the diffusion model. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 222–250. doi:10.1037/a0026003.PubMed Schmitz, F., & Voss, A. (2012). Decomposing task-switching costs with the diffusion model. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 222–250. doi:10.​1037/​a0026003.PubMed
go back to reference Spaniol, J., Madden, D. J., & Voss, A. (2006). A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval. Journal of Experimental Psychology: Learning, Memory & Cognition, 32(1), 101–117. doi:10.1037/0278-7393.32.1.101.CrossRef Spaniol, J., Madden, D. J., & Voss, A. (2006). A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval. Journal of Experimental Psychology: Learning, Memory & Cognition, 32(1), 101–117. doi:10.​1037/​0278-7393.​32.​1.​101.CrossRef
go back to reference Stahl, C., Voss, A., Schmitz, F., Nuszbaum, M., Tüscher, O., Lieb, K., & Klauer, K. C. (2014). Behavioral components of impulsivity. Journal of Experimental Psychology: General, 143(2), 850–886. doi:10.1037/a0033981.CrossRef Stahl, C., Voss, A., Schmitz, F., Nuszbaum, M., Tüscher, O., Lieb, K., & Klauer, K. C. (2014). Behavioral components of impulsivity. Journal of Experimental Psychology: General, 143(2), 850–886. doi:10.​1037/​a0033981.CrossRef
go back to reference Stolz, J., Besner, D., & Carr, T. (2005). Implications of measures of reliability for theories of priming: Activity in semantic memory is inherently noisy and uncoordinated. Visual Cognition, 12(2), 284–336. Stolz, J., Besner, D., & Carr, T. (2005). Implications of measures of reliability for theories of priming: Activity in semantic memory is inherently noisy and uncoordinated. Visual Cognition, 12(2), 284–336.
go back to reference Stumpf, H., Angleitner, A., Wieck, T., Jackson, D., & Beloch-Till, H. (1985). Deutsche personality research form: Hogrefe. Stumpf, H., Angleitner, A., Wieck, T., Jackson, D., & Beloch-Till, H. (1985). Deutsche personality research form: Hogrefe.
go back to reference van Ravenzwaaij, D., Donkin, C., & Vandekerckhove, J. (2016). The EZ Diffusion Model Provides a Powerful Test of Simple Empirical Effects. Manuscript submitted for publication. van Ravenzwaaij, D., Donkin, C., & Vandekerckhove, J. (2016). The EZ Diffusion Model Provides a Powerful Test of Simple Empirical Effects. Manuscript submitted for publication.
go back to reference Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14(6), 1011–1026. doi:10.3758/bf03193087.CrossRef Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14(6), 1011–1026. doi:10.​3758/​bf03193087.CrossRef
go back to reference Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New York: Springer.CrossRef Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New York: Springer.CrossRef
go back to reference Voss, A., Nagler, M., & Lerche, V. (2013a). Diffusion models in experimental psychology. A practical introduction. Experimental Psychology, 60(6), 385–402.PubMedCrossRef Voss, A., Nagler, M., & Lerche, V. (2013a). Diffusion models in experimental psychology. A practical introduction. Experimental Psychology, 60(6), 385–402.PubMedCrossRef
go back to reference Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013b). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536.CrossRef Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013b). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536.CrossRef
go back to reference Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 1206–1220.CrossRef Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 1206–1220.CrossRef
go back to reference Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of Mathematical Psychology, 52(1), 1–9.CrossRef Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of Mathematical Psychology, 52(1), 1–9.CrossRef
go back to reference Voss, A., Voss, J., & Klauer, K. C. (2010). Separating response-execution bias from decision bias: Arguments for an additional parameter in Ratcliff’s diffusion model. British Journal of Mathematical and Statistical Psychology, 63(3), 539–555. doi:10.1348/000711009x477581.PubMedCrossRef Voss, A., Voss, J., & Klauer, K. C. (2010). Separating response-execution bias from decision bias: Arguments for an additional parameter in Ratcliff’s diffusion model. British Journal of Mathematical and Statistical Psychology, 63(3), 539–555. doi:10.​1348/​000711009x477581​.PubMedCrossRef
go back to reference Voss, A., Voss, J., & Lerche, V. (2015). Assessing Cognitive Processes with Diffusion Model Analyses: A Tutorial based on fast-dm-30. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00336. Voss, A., Voss, J., & Lerche, V. (2015). Assessing Cognitive Processes with Diffusion Model Analyses: A Tutorial based on fast-dm-30. Frontiers in Psychology, 6. doi:10.​3389/​fpsyg.​2015.​00336.
go back to reference Wagenmakers, E.-J., Grasman, R. P. P. P., & Molenaar, P. C. M. (2005). On the relation between the mean and the variance of a diffusion model response time distribution. Journal of Mathematical Psychology, 49(3), 195–204. doi:10.1016/j.jmp.2005.02.003.CrossRef Wagenmakers, E.-J., Grasman, R. P. P. P., & Molenaar, P. C. M. (2005). On the relation between the mean and the variance of a diffusion model response time distribution. Journal of Mathematical Psychology, 49(3), 195–204. doi:10.​1016/​j.​jmp.​2005.​02.​003.CrossRef
go back to reference Wagenmakers, E.-J., van der Maas, H. L. J., Dolan, C. V., & Grasman, R. P. P. P. (2008b). EZ does it! Extensions of the EZ-diffusion model. Psychonomic Bulletin & Review, 15(6), 1229–1235. doi:10.3758/pbr.15.6.1229.CrossRef Wagenmakers, E.-J., van der Maas, H. L. J., Dolan, C. V., & Grasman, R. P. P. P. (2008b). EZ does it! Extensions of the EZ-diffusion model. Psychonomic Bulletin & Review, 15(6), 1229–1235. doi:10.​3758/​pbr.​15.​6.​1229.CrossRef
go back to reference Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14(1), 3–22. doi:10.3758/bf03194023.CrossRef Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14(1), 3–22. doi:10.​3758/​bf03194023.CrossRef
go back to reference Wessa, M., Kanske, P., Neumeister, P., Bode, K., Heissler, J., & Schönfelder, S. (2010). EmoPics: Subjektive und psychophysiologische Evaluation neuen Bildmaterials für die klinisch-biopsychologische Forschung. Zeitschrift für Klinische Psychologie und Psychotherapie, Supplementum, 1(11), 77. Wessa, M., Kanske, P., Neumeister, P., Bode, K., Heissler, J., & Schönfelder, S. (2010). EmoPics: Subjektive und psychophysiologische Evaluation neuen Bildmaterials für die klinisch-biopsychologische Forschung. Zeitschrift für Klinische Psychologie und Psychotherapie, Supplementum, 1(11), 77.
go back to reference White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010a). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10(5), 662–677. doi:10.1037/a0019474.PubMedCrossRef White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010a). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10(5), 662–677. doi:10.​1037/​a0019474.PubMedCrossRef
go back to reference Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669–689.CrossRef Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669–689.CrossRef
go back to reference Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in neuroinformatics, 7. Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in neuroinformatics, 7.
go back to reference Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 53.PubMed Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 53.PubMed
go back to reference Yap, M. J., Sibley, D. E., Balota, D. A., Ratcliff, R., & Rueckl, J. (2015). Responding to nonwords in the lexical decision task: Insights from the English Lexicon Project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 597–613. doi:10.1037/xlm0000064.PubMed Yap, M. J., Sibley, D. E., Balota, D. A., Ratcliff, R., & Rueckl, J. (2015). Responding to nonwords in the lexical decision task: Insights from the English Lexicon Project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 597–613. doi:10.​1037/​xlm0000064.PubMed
Metagegevens
Titel
Retest reliability of the parameters of the Ratcliff diffusion model
Auteurs
Veronika Lerche
Andreas Voss
Publicatiedatum
23-04-2016
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-016-0770-5

Andere artikelen Uitgave 3/2017

Psychological Research 3/2017 Naar de uitgave