Skip to main content
Top
Gepubliceerd in:

01-03-2015 | Original Paper

Resting-State Alpha in Autism Spectrum Disorder and Alpha Associations with Thalamic Volume

Auteurs: J. Christopher Edgar, Kory Heiken, Yu-Han Chen, John D. Herrington, Vivian Chow, Song Liu, Luke Bloy, Mingxiong Huang, Juhi Pandey, Katelyn M. Cannon, Saba Qasmieh, Susan E. Levy, Robert T. Schultz, Timothy P. L. Roberts

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 3/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Alpha circuits (8–12 Hz), necessary for basic and complex brain processes, are abnormal in autism spectrum disorder (ASD). The present study obtained estimates of resting-state (RS) alpha activity in children with ASD and examined associations between alpha activity, age, and clinical symptoms. Given that the thalamus modulates cortical RS alpha rhythms, associations between thalamic structure and alpha activity were examined. RS magnetoencephalography was obtained from 47 typically-developing children (TDC) and 41 children with ASD. RS alpha activity was measured using distributed source localization. Left and right thalamic volume measurements were also obtained. In both groups, the strongest alpha activity was observed in Calcarine Sulcus regions. In Calcarine regions, only TDC showed the expected association between age and alpha peak frequency. ASD had more alpha activity than TDC in regions bordering the Central Sulcus as well as parietal association cortices. In ASD, whereas greater left Central Sulcus relative alpha activity was associated with higher Social Responsiveness Scale (SRS) scores, greater Calcarine region relative alpha activity was associated with lower SRS scores. Although thalamic volume group differences were not observed, relationships between thalamic volume and Calcarine alpha power were unique to TDC. The present study also identified a failure to shift peak alpha frequency as a function of age in primary alpha-generating areas in children with ASD. Findings suggested that increased RS alpha activity in primary motor and somatosensory as well as parietal multimodal areas—with increased alpha thought to reflect greater inhibition—might impair the ability to identify or interpret social cues. Finally, to our knowledge, this is the first study to report associations between thalamic volume and alpha power, an association observed only in TDC. The lack of thalamic and alpha associations in ASD suggests thalamic contributions to RS alpha abnormalities in ASD.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Anderson, P., & Sears, T. A. (1964). The role of inhibition in the phasing of spontaneous thalamocortical discharge. The Journal of Physiology, 173, 459–480.CrossRef Anderson, P., & Sears, T. A. (1964). The role of inhibition in the phasing of spontaneous thalamocortical discharge. The Journal of Physiology, 173, 459–480.CrossRef
go back to reference Berger, H. (1929). Über das elektrenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570.CrossRef Berger, H. (1929). Über das elektrenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570.CrossRef
go back to reference Berman, J., Liu, S., Bloy, L., Blaskey, L., Roberts, T. P. L., & Edgar, J. C. (2014) Alpha-to-Gamma phase-amplitude coupling methods and application to autism spectrum disorder. Brain Connectivity. doi:10.1089/brain.2014.0242. Berman, J., Liu, S., Bloy, L., Blaskey, L., Roberts, T. P. L., & Edgar, J. C. (2014) Alpha-to-Gamma phase-amplitude coupling methods and application to autism spectrum disorder. Brain Connectivity. doi:10.​1089/​brain.​2014.​0242.
go back to reference Bouyer, J. J., Tilquin, C., & Rougeul, A. (1983). Thalamic rhythms in cat during quiet wakefulness and immobility. Electroencephalography and Clinical Neurophysiology, 55, 180–187.CrossRefPubMed Bouyer, J. J., Tilquin, C., & Rougeul, A. (1983). Thalamic rhythms in cat during quiet wakefulness and immobility. Electroencephalography and Clinical Neurophysiology, 55, 180–187.CrossRefPubMed
go back to reference Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.CrossRefPubMed Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.CrossRefPubMed
go back to reference Cheon, K. A., Kim, Y. S., Oh, S. H., Park, S. Y., Yoon, H. W., Herrington, J., et al. (2011). Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: A Diffusion Tensor Imaging study. Brain Research, 1417, 77–86.CrossRefPubMed Cheon, K. A., Kim, Y. S., Oh, S. H., Park, S. Y., Yoon, H. W., Herrington, J., et al. (2011). Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: A Diffusion Tensor Imaging study. Brain Research, 1417, 77–86.CrossRefPubMed
go back to reference Cornew, L., Roberts, T. P., Blaskey, L., & Edgar, J. C. (2012). Resting-state oscillatory activity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42, 1884–1894.CrossRefPubMedCentralPubMed Cornew, L., Roberts, T. P., Blaskey, L., & Edgar, J. C. (2012). Resting-state oscillatory activity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42, 1884–1894.CrossRefPubMedCentralPubMed
go back to reference Danos, P., Guich, S., Abel, L., & Buchsbaum, M. S. (2001). Eeg alpha rhythm and glucose metabolic rate in the thalamus in schizophrenia. Neuropsychobiology, 43, 265–272.CrossRefPubMed Danos, P., Guich, S., Abel, L., & Buchsbaum, M. S. (2001). Eeg alpha rhythm and glucose metabolic rate in the thalamus in schizophrenia. Neuropsychobiology, 43, 265–272.CrossRefPubMed
go back to reference Davidson, R. J. (1988). EEG measures of cerebral asymmetry: conceptual and methodological issues. The International Journal of Neuroscience, 39, 71–89.CrossRefPubMed Davidson, R. J. (1988). EEG measures of cerebral asymmetry: conceptual and methodological issues. The International Journal of Neuroscience, 39, 71–89.CrossRefPubMed
go back to reference Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., et al. (2013). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-013-1904-x. Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., et al. (2013). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. Journal of Autism and Developmental Disorders. doi:10.​1007/​s10803-013-1904-x.
go back to reference Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Lee, S. (2008). Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse, 62, 501–507.CrossRefPubMedCentralPubMed Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Lee, S. (2008). Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse, 62, 501–507.CrossRefPubMedCentralPubMed
go back to reference Gandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P., & Siegel, S. J. (2010). Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biological Psychiatry, 68, 1100–1106.CrossRefPubMed Gandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P., & Siegel, S. J. (2010). Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biological Psychiatry, 68, 1100–1106.CrossRefPubMed
go back to reference Gastaut, H. (1958) Some Aspects of the neurophysiological basis of conditioned reflexes and behaviour. In G. E. W. Wolstenholme and C. M. O’Connor (Eds.), Ciba Foundation Symposium—Neurological Basis of Behaviour. John Wiley & Sons, Ltd., Chichester, UK. Gastaut, H. (1958) Some Aspects of the neurophysiological basis of conditioned reflexes and behaviour. In G. E. W. Wolstenholme and C. M. O’Connor (Eds.), Ciba Foundation Symposium—Neurological Basis of Behaviour. John Wiley & Sons, Ltd., Chichester, UK.
go back to reference Hardan, A. Y., Girgis, R. R., Adams, J., Gilbert, A. R., Keshavan, M. S., & Minshew, N. J. (2006). Abnormal brain size effect on the thalamus in autism. Psychiatry Research, 147, 145–151.CrossRefPubMed Hardan, A. Y., Girgis, R. R., Adams, J., Gilbert, A. R., Keshavan, M. S., & Minshew, N. J. (2006). Abnormal brain size effect on the thalamus in autism. Psychiatry Research, 147, 145–151.CrossRefPubMed
go back to reference Hardan, A. Y., Girgis, R. R., Adams, J., Gilbert, A. R., Melhem, N. M., Keshavan, M. S., et al. (2008). Brief report: abnormal association between the thalamus and brain size in Asperger’s disorder. Journal of Autism and Developmental Disorders, 38, 390–394.CrossRefPubMed Hardan, A. Y., Girgis, R. R., Adams, J., Gilbert, A. R., Melhem, N. M., Keshavan, M. S., et al. (2008). Brief report: abnormal association between the thalamus and brain size in Asperger’s disorder. Journal of Autism and Developmental Disorders, 38, 390–394.CrossRefPubMed
go back to reference Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalography and Clinical Neurophysiology, 32, 681–695.CrossRefPubMed Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalography and Clinical Neurophysiology, 32, 681–695.CrossRefPubMed
go back to reference Huang, M. X., Huang, C. W., Robb, A., Angeles, A., Nichols, S. L., Baker, D. G., et al. (2014). MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. NeuroImage, 84, 585–604.CrossRefPubMedCentralPubMed Huang, M. X., Huang, C. W., Robb, A., Angeles, A., Nichols, S. L., Baker, D. G., et al. (2014). MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. NeuroImage, 84, 585–604.CrossRefPubMedCentralPubMed
go back to reference Huang, M. X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., et al. (2012). An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage, 61, 1067–1082.CrossRefPubMed Huang, M. X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., et al. (2012). An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage, 61, 1067–1082.CrossRefPubMed
go back to reference Huang, M. X., Song, T., Hagler, D. J, Jr, Podgorny, I., Jousmaki, V., Cui, L., et al. (2007). A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage, 37, 731–748.CrossRefPubMedCentralPubMed Huang, M. X., Song, T., Hagler, D. J, Jr, Podgorny, I., Jousmaki, V., Cui, L., et al. (2007). A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage, 37, 731–748.CrossRefPubMedCentralPubMed
go back to reference Hughes, S. W., Blethyn, K. L., Cope, D. W., & Crunelli, V. (2002). Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience, 110, 395–401.CrossRefPubMed Hughes, S. W., Blethyn, K. L., Cope, D. W., & Crunelli, V. (2002). Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience, 110, 395–401.CrossRefPubMed
go back to reference Hughes, S. W., & Crunelli, V. (2005). Thalamic mechanisms of EEG alpha rhythms and their pathological implications. The Neuroscientist, 11, 357–372.CrossRefPubMed Hughes, S. W., & Crunelli, V. (2005). Thalamic mechanisms of EEG alpha rhythms and their pathological implications. The Neuroscientist, 11, 357–372.CrossRefPubMed
go back to reference Hughes, S. W., Lorincz, M., Cope, D. W., Blethyn, K. L., Kekesi, K. A., Parri, H. R., et al. (2004). Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron, 42, 253–268.CrossRefPubMed Hughes, S. W., Lorincz, M., Cope, D. W., Blethyn, K. L., Kekesi, K. A., Parri, H. R., et al. (2004). Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron, 42, 253–268.CrossRefPubMed
go back to reference Jahnsen, H., & Llinas, R. (1984). Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. Journal of Physiology, 349, 205–226.CrossRefPubMedCentralPubMed Jahnsen, H., & Llinas, R. (1984). Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. Journal of Physiology, 349, 205–226.CrossRefPubMedCentralPubMed
go back to reference Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., et al. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Science USA, 110(8), 3107–3312.CrossRef Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., et al. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Science USA, 110(8), 3107–3312.CrossRef
go back to reference Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29, 169–195.CrossRefPubMed Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29, 169–195.CrossRefPubMed
go back to reference Levitt, P., Eagleson, K. L., & Powell, E. M. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27, 400–406.CrossRefPubMed Levitt, P., Eagleson, K. L., & Powell, E. M. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27, 400–406.CrossRefPubMed
go back to reference Lindgren, K. A., Larson, C. L., Schaefer, S. M., Abercrombie, H. C., Ward, R. T., Oakes, T. R., et al. (1999). Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biological Psychiatry, 45, 943–952.CrossRefPubMed Lindgren, K. A., Larson, C. L., Schaefer, S. M., Abercrombie, H. C., Ward, R. T., Oakes, T. R., et al. (1999). Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biological Psychiatry, 45, 943–952.CrossRefPubMed
go back to reference Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.CrossRefPubMed Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.CrossRefPubMed
go back to reference Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.CrossRefPubMed Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.CrossRefPubMed
go back to reference Lorincz, M. L., Kekesi, K. A., Juhasz, G., Crunelli, V., & Hughes, S. W. (2009). Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron, 63, 683–696.CrossRefPubMedCentralPubMed Lorincz, M. L., Kekesi, K. A., Juhasz, G., Crunelli, V., & Hughes, S. W. (2009). Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron, 63, 683–696.CrossRefPubMedCentralPubMed
go back to reference Mizuno, A., Villalobos, M. E., Davies, M. M., Dahl, B. C., & Muller, R. A. (2006). Partially enhanced thalamocortical functional connectivity in autism. Brain Research, 1104, 160–174.CrossRefPubMed Mizuno, A., Villalobos, M. E., Davies, M. M., Dahl, B. C., & Muller, R. A. (2006). Partially enhanced thalamocortical functional connectivity in autism. Brain Research, 1104, 160–174.CrossRefPubMed
go back to reference Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: Forward solutions for inverse methods. IEEE Transactions on Bio-medical Engineering, 46, 245–259.CrossRefPubMed Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: Forward solutions for inverse methods. IEEE Transactions on Bio-medical Engineering, 46, 245–259.CrossRefPubMed
go back to reference Nair, A., Treiber, J. M., Shukla, D. K., Shih, P., & Muller, R. A. (2013). Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain, 136, 1942–1955.CrossRefPubMedCentralPubMed Nair, A., Treiber, J. M., Shukla, D. K., Shih, P., & Muller, R. A. (2013). Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain, 136, 1942–1955.CrossRefPubMedCentralPubMed
go back to reference Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56, 907–922.CrossRefPubMedCentralPubMed Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56, 907–922.CrossRefPubMedCentralPubMed
go back to reference Pfurtscheller, G. (2006). The cortical activation model (CAM). Progress in Brain Research, 159, 19–27.CrossRefPubMed Pfurtscheller, G. (2006). The cortical activation model (CAM). Progress in Brain Research, 159, 19–27.CrossRefPubMed
go back to reference Pfurtscheller, G., Stancak, A, Jr, & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24, 39–46.CrossRefPubMed Pfurtscheller, G., Stancak, A, Jr, & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24, 39–46.CrossRefPubMed
go back to reference Roberts, T. P., Lanza, M. R., Dell, J., Qasmieh, S., Hines, K., Blaskey, L., et al. (2013). Maturational differences in thalamocortical white matter microstructure and auditory evoked response latencies in autism spectrum disorders. Brain Research, 1537, 79–85.CrossRefPubMedCentralPubMed Roberts, T. P., Lanza, M. R., Dell, J., Qasmieh, S., Hines, K., Blaskey, L., et al. (2013). Maturational differences in thalamocortical white matter microstructure and auditory evoked response latencies in autism spectrum disorders. Brain Research, 1537, 79–85.CrossRefPubMedCentralPubMed
go back to reference Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8, 66.CrossRefPubMedCentralPubMed Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8, 66.CrossRefPubMedCentralPubMed
go back to reference Salmelin, R., & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalography and Clinical Neurophysiology, 91, 237–248.CrossRefPubMed Salmelin, R., & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalography and Clinical Neurophysiology, 91, 237–248.CrossRefPubMed
go back to reference Schreckenberger, M., Lange-Asschenfeldt, C., Lochmann, M., Mann, K., Siessmeier, T., Buchholz, H. G., et al. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage, 22, 637–644.CrossRefPubMed Schreckenberger, M., Lange-Asschenfeldt, C., Lochmann, M., Mann, K., Siessmeier, T., Buchholz, H. G., et al. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage, 22, 637–644.CrossRefPubMed
go back to reference Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320, 1–63.CrossRefPubMed Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320, 1–63.CrossRefPubMed
go back to reference Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology, 51, 1759–1768.CrossRefPubMed Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology, 51, 1759–1768.CrossRefPubMed
go back to reference Theis, M., Speidel, D., & Willecke, K. (2004). Astrocyte cultures from conditional connexin43-deficient mice. Glia, 46, 130–141.CrossRefPubMed Theis, M., Speidel, D., & Willecke, K. (2004). Astrocyte cultures from conditional connexin43-deficient mice. Glia, 46, 130–141.CrossRefPubMed
go back to reference Tsatsanis, K. D., Rourke, B. P., Klin, A., Volkmar, F. R., Cicchetti, D., & Schultz, R. T. (2003). Reduced thalamic volume in high-functioning individuals with autism. Biological Psychiatry, 53, 121–129.CrossRefPubMed Tsatsanis, K. D., Rourke, B. P., Klin, A., Volkmar, F. R., Cicchetti, D., & Schultz, R. T. (2003). Reduced thalamic volume in high-functioning individuals with autism. Biological Psychiatry, 53, 121–129.CrossRefPubMed
go back to reference VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7, 207–213.CrossRefPubMed VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7, 207–213.CrossRefPubMed
go back to reference Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62, 192–197.CrossRefPubMedCentralPubMed Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62, 192–197.CrossRefPubMedCentralPubMed
go back to reference Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.CrossRefPubMed Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.CrossRefPubMed
Metagegevens
Titel
Resting-State Alpha in Autism Spectrum Disorder and Alpha Associations with Thalamic Volume
Auteurs
J. Christopher Edgar
Kory Heiken
Yu-Han Chen
John D. Herrington
Vivian Chow
Song Liu
Luke Bloy
Mingxiong Huang
Juhi Pandey
Katelyn M. Cannon
Saba Qasmieh
Susan E. Levy
Robert T. Schultz
Timothy P. L. Roberts
Publicatiedatum
01-03-2015
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 3/2015
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-014-2236-1

Andere artikelen Uitgave 3/2015

Journal of Autism and Developmental Disorders 3/2015 Naar de uitgave