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Supplement to “A Two-Step, Test-Guided Mokken Scale Analysis, for Nonclustered and

Clustered data”

This document contains the technical details pertaining the estimation of item-score probabilities

and scalability coefficients in nonclustered and clustered data, using different methods of computing

item-score proportions. Also, we give results from a simulation study in which the estimation

methods were investigated.

1 Estimating Item-Score Probabilities

Let a test consist of I dichotomous items, indexed i or j (i, j = 1,2, . . . , I; i 6= j), which is

administered to S groups, indexed s (s = 1,2, . . . ,S), with Rs respondents in group s, indexed r

(r = 1,2, . . . ,Rs). For nonclustered data, S = 1 and Rs is the total number of respondents. Let

Xsri denote the score of group s by respondent r on item i, with realization xsri (xsri = 0 or 1).

Let P(Xsri = 1) denote the univariate item-score probability of endorsing item i for a randomly

selected respondent, and P(Xsri = 0,Xsr j = 1) denote the bivariate item-score probability of

endorsing item j, but not item i. For dichotomous items P(Xsri = 0) = 1−P(Xsri = 1). There

are 2I item-score patterns xx1x2...xI
1 2 ... I = (Xsr1 = x1,Xsr2 = x2, . . . ,XsrI = xI). Let probability P(X =

xx1x2...xI
1 2 ... I ) = P(Xsr1 = x1,Xsr2 = x2, . . . ,XsrI = xI) denote the probability for scoring item-score

pattern xx1x2...xI
1 2 ... I . The item-score pattern probabilities are collected in vector p.

In nonclustered data item-score proportions are computed as

P̂(Xsri = 1) =
1

∑
S
s=1 Rs

S

∑
s=1

Rs

∑
r=1

xsri, (1)

P̂(Xsri = 0,Xsr j = 1) =
1

∑
S
s=1 Rs

S

∑
s=1

Rs

∑
r=1

(1− xsri)xsr j, (2)

and

P̂(X = xx1x2...xI
1 2 ... I ) =

1

∑
S
s=1 Rs

S

∑
s=1

Rs

∑
r=1

(xsr1)
x1(xsr2)

x2 . . .(xsrI)
xI , (3)

which amounts to averaging the frequencies across all respondents. Note that value S and

subscript s both equal 1 in nonclustered data.
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For clustered data, Snijders (2001) argued that using the proportions in Equations 1 to 3

may be biased estimators for the probabilities when the group size Rs is related to the latent

trait value of the group. To avoid biased estimates, he suggested to compute proportions as

P̂(Xsri = 1) =
1
S

S

∑
s=1

1
Rs

Rs

∑
r=1

xsri, (4)

P̂(Xsri = 0,Xsr j = 1) =
1
S

S

∑
s=1

1
Rs

Rs

∑
r=1

(1− xsri)xsr j, (5)

and

P̂(X = xx1x2...xI
1 2 ... I ) =

1
S

S

∑
s=1

1
Rs

Rs

∑
r=1

xx1
sr1xx2

sr2 . . .x
xI
srI (6)

(see also Section 3.2 in Koopman et al., 2017). These computations amount to first averaging

the frequencies per group into group proportions, and then averaging these group proportions

across groups. Note that when group sizes are equal, there is no difference between averaging

frequencies across all respondents (Eq. 1 to 3) and averaging group proportions (Eq. 4 to 6).

2 Computing Scalability Coefficients and Standard Errors

On population level, Mokken’s scalability coefficients and Snijders’ within-rater scalability

coefficients are identical, hence we refer to them as Hi j for item-pair coefficients, Hi for item

coefficients, and H for the total-scale coefficient. Let an (dichotomous) item set be ordered in

descending popularity (or ascending difficulty) such that

P(Xsr1 = 1)≥ P(Xsr2 = 1)≥ . . .≥ P(XsrI = 1). (7)

Hence, item 1 is most popular (least difficult) and item I least popular (most difficult). For a

item set with i < j, item-pair scalability coefficient Hi j is defined as

Hi j = 1−
P(Xsri = 0,Xsr j = 1)

P(Xsri = 0)P(Xsr j = 1)
, (8)
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the item scalability coefficient Hi as

Hi =
∑ j 6=i P(Xsri = 0,Xsr j = 1)

∑ j 6=i P(Xsri = 0)P(Xsr j = 1)
, (9)

and the total-scale coefficient H as

H =
∑i ∑ j>i P(Xsri = 0,Xsr j = 1)

∑i ∑ j>i P(Xsri = 0)P(Xsr j = 1)
(10)

(for polytomous generalizations, see, e.g., Molenaar, 1991; Koopman, Zijlstra, & Van der

Ark, 2020). Mokken’s scalability coefficients are estimated in data samples by replacing the

probabilities P(Xsri = 1), P(Xsri = 0), and P(Xsri = 0,Xsr j = 1) by sample proportions in

Equation 1 and 2, respectively, whereas Snijders’ within-rater scalability coefficients are estimated

by replacing the probabilities by the sample proportions in Equation 4 and 5, respectively.

Because there exist no difference between Mokken’s coefficients and Snijders’ within-rater

coefficients, the estimation methods of within-rater coefficients may be viable to estimate

Mokken’s coefficients in clustered data.

For nonclustered data, standard errors of scalability coefficients were derived by assuming

that the item-score pattern frequencies follow a multinomial distribution with parameters p

and Rs, estimated using Equation 3 (Kuijpers et al., 2013). Bias of the point estimates and

standard errors in nonclustered data was negligible (Kuijpers et al., 2016). For multi-rater

data, standard errors were derived by assuming that the item-score pattern frequencies follow a

multinomial distribution per group with parameters p and Rs, accounting for overdispersion in

the data (Koopman, Zijlstra, & Van der Ark, 2020). Item-score probabilities in p are estimated

using Equation 6. Koopman, Zijlstra, De Rooij, and Van der Ark (2020) showed that bias of

the standard errors was generally negligible, except when group sizes differed. This may be

explained because averaged group proportions from Equation 6 were used to estimate the

standard errors, in which small groups weigh as heavily as large groups, even though they

are usually less accurate. This can introduce relatively much noise, leading to overestimation

of the standard error. For clustered data, we therefore propose replacing Equations 4 and 5

with Equations 1 and 2 to estimate scalability coefficients in Equations 8 to 10, and replacing



4

Equation 5 with Equation 2 to compute p for the multinomial distribution for the standard errors

in clustered data. Hence, we assume that there is no relation between the latent trait value of

the group and the group size. We will refer to the estimation method for nonclustered data as

the one-level method and to our adapted estimation method for clustered data as the two-level

method. The point estimates for the one- and two-level methods are identical, but their standard

errors differ.

3 Simulation Study

To determine whether two-level estimates for the scalability coefficients and standard errors

outperform the one-level methods in clustered data, we need to investigate their performance.

Because the one- and two-level point estimates are identical, we omit the level and refer to them

as the point estimate. The performance of the point estimate, the one- and two-level standard

error, and the one- and two-level Wald-based and range-preserving confidence intervals were

investigated in a Monte Carlo simulation study (see, e.g., Morris et al., 2019). This numerical

computer study involves repeatedly creating data by random sampling. Because the true population

model and parameter value is known in such a study, the behavior of the estimated statistic of

interest can be evaluated under specific conditions, such as in small samples. Syntax files are

available to download from the Open Science Framework (OSF): http://osf.io/y7xud.

Method

Data were generated using a graded response model (Samejima, 1969), an item response

model for polytomous data that is a special case of Mokken’s NIRT model (Van der Ark, 2001).

Each respondent has a latent trait value θsr = θs+δsr, which combines a group component with

a respondent-specific (individual) component. Each simulated data set consisted of S groups,

with Rs respondents in group s, and item scores of seven 5-category items.

Design Factors. The data-generation mechanism varied in terms of number of groups (S),

group size (Rs), and the degree of within-group dependency as denoted by the ICC.

Number of Groups. The levels for the number of groups S were 10, 30, 50, and 100 groups,

where it is expected that S = 10 is too small to result in accurate estimates (e.g., Snijders &

Bosker, 2012, p. 48).

http://osf.io/y7xud
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Group Size. Group size Rs had eight levels. Six levels had equal group size (i.e., 2, 5, 10,

20, 50, and 100 respondents per group) and two levels had unequal group size sampled from

a discrete uniform distribution defined over the interval [10,30]. For the levels with unequal

group sizes, the group size was either independent of the group trait value θs or the group sizes

were matched to the θs values, so that a larger group size implied a higher θs value (discussed

in detail below).

Within-Group Dependency. The ICC had five levels: very small (.06), small (.13), medium

(.25), large (.47), and very large (.69). The ICC was manipulated via the variance of the

respondent-specific component δsr, denoted σ2
δ

. The values were σ2
δ
= .93, .85, .70, .45, and .20

for the five ICC levels, respectively, and was computed for each level by using a large sample

(S = 100,000,Rs = 10). The variance of the group component θs was set to σ2
θ
= 1−σ2

δ
, so the

variance of the combined trait θsr, σ2
θsr

= σ2
θ
+σ2

δ
= 1−σ2

δ
+σ2

δ
= 1 for each level, resulting

in an identical population value for all conditions. For larger σ2
δ

values, the individual effect in

the latent trait θsr is larger (and the group effect smaller), making item scores within the same

group less similar, and as a result, test scores within a group are less similar and the ICC of the

test score is lower.

All levels were fully crossed, which resulted in 8×8×5 = 160 conditions. Per condition,

Q = 1000 datasets were generated, indexed by q (q = 1,2, . . . ,Q). The population value of H

was .515 for all conditions, determined using a large sample (S = 1,000,000). The empirical

standard error SEH was computed for each condition as the standard deviation of Ĥ across the

Q replications, and varied between .005 and .127.

Performance Measures. For the simulated dataset in each replication, we computed the

point estimate of the total-scale scalability coefficient Ĥq, its standard error SEq, the 95%

Wald-based confidence interval CIq, and the 95% range-preserving confidence interval CI∗q ,

using the one- and two-level methods. Population value H is computed using a large sample

(S= 1,000,000) and its standard error SEH as the standard deviation of Ĥ across the replications

within a condition. Performance measures were bias of Ĥ = Q−1
∑

Q
q=1(Ĥq−H), bias of SEĤ =

Q−1
∑

Q
q=1(SEq − SEH), and coverage of the confidence interval (proportion of times H is
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included in CIq or CI∗q ). Also, we compared the symmetry of the undercoverage of the confidence

interval for both type of intervals; that is, whether the undercoverage was equally distributed on

both sides of the interval. A satisfactory coverage (i.e., .95) with symmetric undercoverage in

both tails (i.e., .025) means that one-sided significance tests and confidence intervals can also

be confidently used.

Hypotheses. Unless the group size was related to the group trait value, we expected the

point estimate to be unbiased. We expected the one-level standard error estimates to demonstrate

larger negative bias for conditions with a larger ICC or larger group size. Also, we expected

the two-level standard errors to be biased for the dependent unequal group size conditions, but

unbiased in other conditions. We expected the coverage to display similar trends as the bias

of the standard error estimates, thus undercoverage for the one-level intervals for larger ICC

conditions and over- or undercoverage for the two-level intervals for dependent unequal group

sizes. The Wald-based and range-preserving confidence intervals were expected to display

similar coverage values, as H < .7 (the value at which range-preserving methods are beneficial

according to Koopman et al., in press).

Results

For all conditions, bias of the point estimate of the scalability coefficient was negligible

(approximately -1%, M = −.005, SD = .008, range = −.041; .020). Table 1 shows the results

for the two unequal group size conditions and the most similar equal group size conditions (i.e.,

with 20 respondents). For the dependent, unequal group size condition, the point estimate was

slightly underestimated, with approximately -2% bias. .

The average bias of the one-level SEĤ across all conditions was -.011 (approximately

-31%, SD = .014, range = −.073; .001). The average bias of the two-level SEĤ was .003

(approximately 10%, SD = .005, range = −.017; .017). There was an interaction effect of

ICC and number of groups on the bias of SEĤ for both methods, see Figure 1, left panel.

The one-level SEĤ was generally underestimated, which was more severe for fewer groups

and larger ICC conditions. For (very) small ICC conditions, the one-level bias was negligible.

In general, the bias of two-level SEĤ was negligible for medium to (very) large ICC, but the
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Table 1

Bias of the Point Estimate, Bias of the Standard Error, and Coverage of the 95% Confidence
Interval for Conditions Equal Group Size of 20 Respondents, Independent Unequal Group
Sizes, and Dependent Unequal Group Sizes for the One- and Two-Level Method.

Condition Bias Ĥ Bias SEĤ Coverage CI

One-level One-level Two-level One-level Two-level

Equal, 20 respondents −.004 −.011 .004 .785 .964

Unequal, independent −.005 −.013 .000 .753 .948

Unequal, dependent −.011 −.011 .000 .759 .935

Note. Results were averaged across the ICC conditions and number of groups.

two-level SEĤ was conservative for (very) small ICC conditions. For 10 groups, the bias of

SEĤ varied substantially for various ICC conditions. For both methods, group size had a main

effect on the bias of SEĤ (see Figure 1, right panel). For one-level SEĤ , negative bias increased

with group size. The bias of two-level SEĤ was negligible for larger group sizes, but was

conservative for small groups.

-0.04

-0.02

0.00

Very LargeLargeMediumSmallVery Small

ICC Size

B
ia

s
 S

E

Effect ICC by Nr. of Groups on Bias SE

-0.01

0.00

0.01

25 10 20 50 100

Group Size

B
ia

s
 S

E

Effect Group Size on Bias SE

Nr. of Groups: 10 30 50 100 Method: One-Level Two-Level

Figure 1. Left: Effect of ICC size by the number of groups on the bias of SEĤ , for each method.
Right: Effect of (equal) group size on the bias of SEĤ . The grey lines reflect a bias of 0, (-).005,
and (-).01.

Across all conditions, for the one-level Wald-based confidence interval the average coverage

equalled .782 (range = .234; .963); the undercoverage was .088 in the left tail and .131 in the
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right tail, respectively. For the two-level Wald-based confidence interval, the average coverage

was .954 (range = .793; .995); the undercoverage was .012 and .031 in the left and right

tail, respectively. The coverage of the range-preserving confidence interval was similar to

the Wald-based confidence interval, although slightly less symmetrically distributed (i.e., .080

and .140 for the one-level interval and .007 and .038 for the two-level interval). Therefore,

we discuss the effects of the design factors only for the Wald-based interval. There was an

interaction effect of ICC and group size on the coverage of the one-level confidence interval

(Figure 2, top left panel).The coverage was close to .95 for small groups and (very) small ICC
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Figure 2. Top left plot: Effect of ICC size by the group size on the coverage of the one-level
Wald-based confidence interval. Top right plot: Effect of group size on the two-level coverage.
Bottom right plot: Effect of ICC size by the number of groups on the coverage of the two-level
Wald-based confidence interval. The grey lines reflect a coverage of .92, .935, .95, .965, and
.98.
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conditions, but deteriorated substantially as group sizes and ICC (both) became larger. There

was an interaction effect of ICC and number of groups on the two-level coverage (Figure 2,

bottom right panel). The coverage improved as the ICC became larger, but deteriorated for

conditions with only 10 groups. In addition, there was a main effect of group size on the

two-level coverage (Figure 2, top right panel). The coverage improved for larger group sizes.

Discussion

This simulation study showed that for clustered data, the point estimates for Mokken’s

scalability coefficients are accurately estimated, and usually two-level standard errors and confidence

intervals outperformed their one-level counterparts, especially for larger levels of within-group

dependency and for larger groups. For the conditions with 10 large groups, the two-level

standard error estimate was negatively biased and resulted in undercoverage of the confidence

interval, for medium or larger ICCs. In such a situation, there is only little independent information

present in the data, which is a possible reason for the inaccuracy of the standard error estimates

(e.g., Snijders & Bosker, 2012, p. 24). Larger group sizes are recommended for better coverage

rates of the two-level confidence interval. The confidence interval was somewhat asymmetric

for nested data, possibly caused by skewness of the sampling distribution. As the symmetry was

slightly better for the Wald-based confidence interval, we suggest using this type of interval

if H is (likely) well below the upper boundary of 1. The undercoverage of the left side of the

distribution was lower than the desired value of .025. This means that the one-sided significance

tests that are relevant in Mokken scale analysis are likely to be somewhat conservative, with

type I error rates below the nominal significance level. Our adaption of Snijders’s (2001)

estimation method by using averaged frequencies rather than averaged proportions to estimate

the scalability coefficients and their standard errors led to accurate estimates, even when group

size was related to the trait value of the group. Therefore, we recommend to use our two-level

estimation method for clustered data. The two-level standard error was somewhat overestimated

when the ICC is close to zero, especially for small groups. This may be explained by the

underlying assumption of a multinomial distribution for each group, which cannot be accurately

estimated in such situations. Alternative assumptions (e.g., a dirichlet multinomial distribution)
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are computationally more complex, but may give better results.
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