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Supplementary Figure 1. Receiver operating characteristic (ROC) curves for LGD- and missense-specific shallow neural net (SNN) and baseline 

(random forest, SVM, and logistic regression) models at all false positive rate (FPR) thresholds.  
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Supplementary Figure 2. Receiver operating characteristic (ROC) and precision recall (PR) curves for 

LGD- and missense-specific SNN, baseline (random forest, SVM, and logistic regression), and ensemble 

models trivially trained on only one-hot encoded mutation information. 'Ensemble - SNN' refers to an 

ensemble model generated only from the predictions of baseline models. For a given sample, the ensemble 

model uses the average of the predicted probabilities from SNN and baseline models. SNN, baseline, and 

ensemble models perform similarly while trained only on LGD-specific (A-B), missense-specific (C-D), 

and combined mutation information (E-F). Models trained on missense-specific (C-D) variation alone are 

poor predictors of NDD status.   
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Supplementary Figure 3. Receiver operating characteristic (ROC) curves for three heuristics. For each 

heuristic, samples with a likely gene-disruptive (LGD) mutation in genes within a particular gene set were 

classified as cases. The full range of the ROC curve is displayed on the left, and a magnification is displayed 

on the right.  
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Supplementary Figure 4. Receiver operating characteristic (ROC) curves at low false positive rate (FPR) 

and precision recall (PR) curves for LGD- and missense-specific SNN, baseline (random forest, SVM, and 

logistic regression), and ensemble models. Models trained on LGD-specific variation feature matrices 

additionally use constraint and conservation gene score information, whereas models provided with 

missense-specific feature matrices do not use gene score information. For a given sample, the ensemble 

model uses the average of the predicted probabilities from SNN and baseline models. Ensemble - SNN 

refers to an ensemble of baseline models while excluding SNN predictions. A-B) For LGD-specific 

features, the ensemble model and SNN achieve greater TPR at low FPR < 0.01 compared to baseline 

models, a trend which is evident even at FPR < 0.05. Increased precision at low recall is observed for an 

ensemble model trained on LGD-specific variation. C-D) Models trained on missense-specific variation 

alone are poor predictors of NDD status; SNN and baseline models show similar TPR at FPR < 0.05, with 

the SNN and ensemble models achieving slightly TPR higher rates at low FPR. All models display 

comparable precision at low recall. E-F) For combined prediction for samples with both missense and LGD 

variation, the proportion of cases captured at FPR < 0.01 is largest for the ensemble model, followed by the 

SNN. The ensemble model achieves the largest precision at low recall thresholds.  
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Supplementary Figure 5. Increased enrichment of de novo LGD and missense mutation in NDD cases 

relative to unaffected controls in more highly ranked NDD genes according to an SNN trained on an 

missense-specific feature matrix. Applying a trained SNN on artificial samples containing a single unique 

missense variant allows the SNN to rank genes according to their relative importance to NDD risk with 

respect to missense coding variation. The difference in enrichment in NDD cases versus controls is 
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calculated by Equation 2 (supplementary methods) and displayed on the y-axes. Increasing probability 

(x-axes) indicates increasing importance to NDD risk. The average predicted probability was determined 

for each artificial sample over 100 independent iterations, and 95% confidence intervals are shown. At 

increasing probabilities for artificial samples with missense variants, an increased enrichment of LGD in 

cases (A) and missense in cases (B) is observed. The probability (ranks) assigned to genes is weakly 

correlated with both pLI (C) and LOEUF (D) values.  
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Supplementary Figure 6. Increased enrichment of de novo LGD and missense mutation in NDD cases 

relative to unaffected controls in highly ranked NDD genes according to an SNN trivially trained LGD-

specific feature matrix consisting only of one-hot encoded mutation information. Applying a trivially 

trained SNN on artificial samples containing a single unique LGD variant allows the SNN to rank genes 

according to their relative importance to NDD risk with respect to LGD coding variation. The difference in 
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enrichment in NDD cases versus controls is calculated by Equation 2 and displayed on the y-axes. 

Increasing probability (x-axes) indicates increasing importance to NDD risk. The average predicted 

probability was determined for each artificial sample over 100 independent iterations, and 95% confidence 

intervals are shown. At increasing probabilities for artificial samples with LGD variants, a steady, increased 

enrichment of LGD in cases (A) is observed. A slight enrichment of missense variation (B) in cases relative 

to controls is also observed at larger probabilities. The probability (ranks) assigned to genes is weakly 

correlated with both pLI (C) and LOEUF (D) values. 

 

  



12 

Supplementary Table 1. Neurodevelopmental disorder samples retrieved from denovo-db and associated 

primary phenotypes. 

Study Primary Phenotype Cases Controls 

Simons Simplex Collection Autism 2,508 1,911 

ASC Autism 1,445  

MSSNG Autism 1,625  

NIMH Autism 10  

Hashimoto Autism 30  

GoNL Control  250 

Gulsuner Control  84 

Rauch Intellectual disability 51  

DDD Developmental disorder 4,293  
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Supplementary Table 2. Search space for optimal hyperparameters. A single parameter is varied while 

other values are held constant on values most frequently determined to yield the highest average true 

positive rate (TPR) at false positive rate (FPR) < 0.01 in 100 independent iterations. 

Batch size !1 !2 Neurons 

[8, 16, 32] 100 1e-5 16 

32 [70, …, 120] 1e-5 16 

32 100 [1e-6, …, 1e-2] 16 

32 100 1e-5 [8, 16, 32] 
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Supplementary Table 3. Average true positive rate (TPR) at false positive rate (FPR) < 0.01, area under the curve (ROC-AUC), and precision 

recall area under the curve (PR-AUC) for LGD-specific, missense-specific, and combined shallow neural net (SNN), baseline, randomized 

predictions, and ensemble models trivially trained on feature matrices containing only one-hot encoded mutation information. 'Ensemble - SNN' 

refers to an ensemble model generated only from the predictions of baseline models. Average performance metrics are measured over 100 

independent iterations of randomized training/testing splits on the testing set, in which the same training/testing partition is provided to all models 

at each iteration. Confidence intervals (95% CI) are indicated in parentheses, followed by a z-score quantifying the deviance from the mean 

performance metric of a certain model and the randomized model (supplementary methods).  

Input features Model TPR at FPR < 0.01 (95% CI); z-score ROC-AUC (95% CI); z-score PR-AUC (95% CI); z-score 

LGD-specific SNN 0.24532 (0.2364, 0.2544); 3.85542 0.66696 (0.6616, 0.6727); 2.84528 0.93597 (0.9344, 0.9377); 4.39382 

 Random forest 0.24593 (0.2358, 0.2559); 3.86630 0.66027 (0.657, 0.6636); 3.13763 0.94557 (0.9440, 0.9469); 5.40379 

 SVM 0.25911 (0.2504, 0.2676); 4.43549 0.67015 (0.6668, 0.6734); 3.33195 0.94637 (0.9448, 0.9478); 5.37662 

 Logistic regression 0.24141 (0.234, 0.2487); 4.71332 0.66768 (0.6644, 0.6711); 3.28010 0.94670 (0.9452, 0.9482); 5.51134 

 Ensemble 0.25526 (0.2463, 0.2645); 4.45173 0.67449 (0.6697, 0.6794); 3.05424 0.93795 (0.9362, 0.9395); 4.59742 

 Ensemble - SNN 0.25909 (0.2503, 0.2672); 4.38812 0.66892 (0.6654, 0.6725); 3.30916 0.94658 (0.9451, 0.948); 5.46046 

 Randomized 0.01590 (0.0133, 0.019) 0.51564 (0.5086, 0.5233) 0.8684 

Missense-specific SNN 0.01274 (0.011, 0.0146); 0.81483 0.54538 (0.5427, 0.548); 1.81664 0.86321 (0.8621, 0.8643); 4.20065 

 Random forest 0.01788 (0.0157, 0.0205); 0.94788 0.53337 (0.5311, 0.5357); 1.39329 0.87390 (0.8723, 0.8757); 3.85907 

 SVM 0.00777 (0.0064, 0.0093); 0.41541 0.54479 (0.5424, 0.5472); 1.86765 0.86141 (0.8723, 0.8757); 3.40463 

 Logistic regression 0.00442 (0.0037, 0.0052); 0.09893 0.54581 (0.5435, 0.5484); 1.91177 0.86023 (0.8602, 0.8626); 3.57777 

 Ensemble 0.01385 (0.0121, 0.0157); 0.87097 0.54842 (0.5458, 0.551); 1.96634 0.86460 (0.8591, 0.8613); 4.51338 
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 Ensemble - SNN 0.01385 (0.0123, 0.0158); 0.87638 0.54726 (0.545, 0.5496); 1.98008 0.86464 (0.8636, 0.8656); 4.48374 

 Randomized 0.00382 (0.0031, 0.0046) 0.49954 (0.496, 0.503) 0.8353  

Combined SNN 0.27952 (0.2671, 0.2929); 2.93042 0.67796 (0.6705, 0.6855); 2.45043 0.93764 (0.9356, 0.94); 3.17344 

 Random forest 0.28581 (0.2743, 0.2972); 3.19354 0.66765 (0.6634, 0.6715); 2.74962 0.94663 (0.9449, 0.9484); 3.82637 

 SVM 0.29840 (0.2867, 0.309); 3.43782 0.68337 (0.6785, 0.688); 2.89963 0.94854 (0.9466, 0.9506); 3.92888 

 Logistic regression 0.12399 (0.1013, 0.1488); 0.63492 0.69015 (0.6841, 0.6963); 2.87051 0.93856 (0.9357, 0.9414); 2.92455 

 Ensemble 0.29459 (0.2828, 0.306); 3.34720 0.68981 (0.6825, 0.6968); 2.70058 0.94080 (0.9387, 0.943); 3.42898 

 Ensemble - SNN 0.30602 (0.2944, 0.3179); 3.49605 0.68776 (0.6831, 0.6925); 2.99052 0.94837 (0.9466, 0.9503); 3.91210 

 Randomized 0.03293 (0.0274, 0.0387) 0.51969 (0.512, 0.5281) 0.8690 
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Supplementary Table 4. True positive (TPR) and false positive rates (FPR) for three heuristics. A sample 

was classified as a case if the sample contained a likely gene-disruptive (LGD) mutation in a set of risk 

genes where the gene 1) i) has a SFARI score of 1 or ii) a SFARI score of 1 or 2, 2) was classified as a 

SPARK i) prioritized gene or ii) risk gene, and 3) i) pLI >= 0.90 or ii) LOEUF < 0.35. 

Heuristic TPR FPR 

SFARI, score 1 0.1056 0.0311 

SFARI, score 1 or 2 0.1474 0.0545 

SPARK (prioritized) 0.0535 0.0056 

SPARK (risk) 0.0873 0.025 

pLI >= 0.9 0.3491 0.2369 

LOEUF < 0.35 0.3569 0.2481 



17 

Supplementary Table 5. Average true positive rate (TPR) at false positive rate (FPR) < 0.01, area under the curve (ROC-AUC), and precision 

recall area under the curve (PR-AUC) for missense-specific shallow neural net (SNN), baseline, randomized predictions, and ensemble models using 

feature matrices containing only one-hot encoded deleterious (PrimateAI score >= 0.803) missense variation i) during training without removing 

any samples from the dataset or ii) during both training and testing by removing samples without deleterious missense variation from the dataset. 

'Ensemble - SNN' refers to an ensemble model generated only from the predictions of baseline models. Average performance metrics are measured 

over 100 independent iterations of randomized training/testing splits on the testing set, in which the same training/testing partition is provided to all 

models at each iteration. Confidence intervals (95% CI) are indicated in parentheses, followed by a z-score quantifying the deviance from the mean 

performance metric of a certain model and the randomized model (supplementary methods).  

Input features Model TPR at FPR < 0.01 (95% CI); z-score ROC-AUC (95% CI); z-score PR-AUC (95% CI); z-score 

Missense-specific (i) SNN 0.02829 (0.0211, 0.0359); 1.33101 0.54744 (0.542, 0.5525); 1.97382 0.87008 (0.8681, 0.8722); 6.10794 

 Random forest 0.02660 (0.0202, 0.0336); 1.38829 0.54222 (0.5374, 0.5474); 1.76958 0.87564 (0.8715, 0.8797); 3.85456 

 SVM 0.02584 (0.0175, 0.0337); 1.04541 0.55408 (0.5489, 0.5595); 2.29522 0.87556 (0.8726, 0.8783); 5.52276 

 Logistic regression 0.01033 (0.0062, 0.0151); 0.57026 0.55447 (0.5493, 0.5595); 2.30987 0.87337 (0.8701, 0.8767); 4.51765 

 Ensemble 0.02883 (0.0218, 0.0356); 1.43505 0.55427 (0.549, 0.5594); 2.27145 0.87188 (0.8695, 0.8741); 6.24093 

 Ensemble - SNN 0.03000 (0.023, 0.037); 1.44297 0.55441 (0.5494, 0.5596); 2.31924 0.87547 (0.8727, 0.8782); 5.59827 

 Randomized 0.00323 (0.0022, 0.0044) 0.50044 (0.4931, 0.5083) 0.83492 (0.8342, 0.8357) 

Missense-specific (ii) SNN 0.09378 (0.0719, 0.116); 1.51357 0.63740 (0.626, 0.6487); 3.07228 0.93743 (0.9345, 0.9403); 4.09638 

 Random forest 0.08738 (0.0595, 0.1177); 1.07341 0.62847 (0.6178, 0.639); 2.89912 0.94014 (0.9371, 0.9431); 4.26020 

 SVM 0.07504 (0.0503, 0.1034); 0.94629 0.63587 (0.6268, 0.6452); 3.23138 0.94094 (0.9377, 0.9442); 4.39978 

 Logistic regression 0.05182 (0.0247, 0.0802); 0.56745 0.63210 (0.6209, 0.642); 3.03888 0.93585 (0.9318, 0.9399); 3.39856 
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 Ensemble 0.08648 (0.0647, 0.1114); 1.37385 0.64388 (0.6332, 0.6529); 3.31811 0.93892 (0.9361, 0.9416); 4.47331 

 Ensemble - SNN 0.08155 (0.0578, 0.1037); 1.17750 0.63327 (0.6235, 0.6425); 3.06469 0.94012 (0.9372, 0.9431); 4.47532 

 Randomized 0.01051 (0.0062, 0.0154) 0.50026 0.485, 0.5142) 0.89386 (0.8908, 0.8969) 
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Supplementary methods 

Construction of LGD- and missense-specific feature matrices 

 De novo LGD and missense variants were retrieved from samples with autism spectrum disorder, 

developmental disability, or intellectual disability directly from denovo-db (version 1.6.1) (C Yuen et al. 

2017; De Rubeis et al. 2014; Deciphering Developmental Disorders Study 2017; Genome of the 

Netherlands Consortium 2014; Gulsuner et al. 2013; Hashimoto et al. 2016; Iossifov et al. 2014; Krumm et 

al. 2015; Michaelson et al. 2012; B. J. O’Roak et al. 2014; Brian J. O’Roak et al. 2012; Rauch et al. 2012; 

Turner et al. 2016, 2017; Werling et al. 2018; Yuen et al. 2016). 

 For a given individual for a particular gene, the presence of an LGD variant was indicated in the 

feature matrix with a 1, the absence of any de novo variants as a 0, and the presence of a missense variant 

as the associated PrimateAI score (Sundaram et al. 2018).  For example, for a sample possessing both LGD 

and missense variation, the presence of missense variation is simply denoted as a 0 in the LGD-specific 

matrix. In the case of multiple de novo variants existing in a single gene in a single sample,  the mutation 

is recorded in the feature matrix as the larger of the scores. For the model trained on an LGD-specific 

feature matrix (LGD-specific model), gene score features related to pLI, LOEUF, RVIS, and phastCons 

values were generated by matrix multiplication with the LGD-specific feature matrix(Karczewski et al. 

2020; Petrovski et al. 2013; Siepel et al. 2005). The gene scores features were concatenated with the LGD-

specific feature matrix to yield a matrix of size (samples by (genes + 4)). The missense-specific feature 

matrix uses a simplified set of features of size (samples by genes), only indicating the presence of missense 

mutations in genes. 

Following the splitting of all samples into training and testing sets, during model training, min-max 

scaling (from scikit-learn MinMaxScaler()) is applied to the training set, and the testing set is transformed 

with the applied scaler. Class weights were balanced according to 

sklearn.utils.class_weight.compute_class_weight (version 0.22.1).  

 

Hyperparameter optimization 
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During hyperparameter optimization (Figure 1B), K-fold stratified cross-validation (K=3) is 

applied to the training set, in which the input set is split into K folds. K-1 folds are used as training folds, 

and a single fold is used as a validation fold. Over K iterations, a different fold is selected as the validation 

fold. Optimal hyperparameters for SNNs are selected from the following possible values: batch size={8, 

16, 32}, !1= {70, 80, 90, 100, 110, 120}, L2 regularization !2={1e-2, 1e-3, 1e-4, 1e-5, 1e-6}, and number 

of neurons in the hidden layer={8, 16, 32}. To decrease compute time and the hyperparameter search space, 

selected combinations (Supplementary Table 2) are evaluated. For the SNNs, for every validation fold 

and potential set of optimal hyperparameters, the probability of a being a case is retrieved for every 

individual in the validation fold and the TPR at FPR < 0.01 is determined. 'TPR at FPR < 0.01' is calculated 

by first identifying the largest predicted probability associated with a control in a validation fold, followed 

by determining the fraction of cases in the validation fold with predicted probabilities greater than that of 

the control with the largest predicted probability, which is equivalent to an FPR of 0 and necessarily lower 

than 0.01To provide a more conservative estimate of the TPR at FPR equal to 0, we refer to this value as 

'TPR at FPR < 0.01'. The optimal set of hyperparameters are defined as the set of hyperparameters for which 

the largest average TPR at FPR < 0.01 is achieved in the validation folds.  

During hyperparameter optimization for baseline models, optimal hyperparameters are selected by 

minimizing the model’s corresponding loss function value (random forest: Gini impurity, SVM: hinge loss, 

logistic regression: cross entropy). Optimal hyperparameters are selected among the following values for 

the baselines models: Random Forest: trees={100, 200, 300, 400, 500}, maximum depth={32, 36, 40, 44, 

48, 52}; SVM: C={10, 1, 1e-2, 1e-3}; logistic regression: C={10,000, 1,000, 100, 10, 1}. C is inversely 

proportional to L2 regularization strength in both SVM and logistic regression models.  

 

Assessment of model performance 

The average performance of a model is assessed over 100 independent iterations in which the 

training and testing sets are randomly partitioned and optimal hyperparameters are selected per iteration. 

For each iteration, the performance metrics TPR at FPR < 0.01, ROC-AUC, and PR-AUC are determined 
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from the predicted probabilities of samples in the testing set. Averages of these performance metrics and 

bootstrapped 95% confidence intervals are reported for LGD-specific, missense-specific, and combined 

predictions for our SNN, three baseline models, an ensemble model, and an ensemble model excluding 

SNN predictions (Table 1). The full ensemble model, for every independent iteration, returns the average 

predicted probability using the predicted probabilities from the SNN and baseline models for every sample 

in the testing set. The TPR at FPR < 0.01, ROC-AUC, and PR-AUC are reported similarly for the ensemble 

model on the resultant average probabilities from the SNN and baseline models. For each model, bootstrap 

confidence intervals (95%) and z-scores were calculated for each performance metric. The z-score was 

calculated as the difference between the mean performance metric for a certain model and the randomized 

model divided by the square root of the sum of the variances.  

To compare the performance of SNN, baseline, and ensemble models to randomized predictions, 

probabilities were randomly generated from a uniform distribution and assigned to samples. Average 

random PR-AUC values were calculated by dividing the number of cases in a testing set by the total number 

of samples within the testing set. Models that were 'trivially trained' refer to using one-hot encoded feature 

matrices indicating only the presence or absence (denoted as 1 or 0, respectively) of de novo LGD or 

missense mutation. TPR and FPR values were retrieved for three heuristics, where a sample was classified 

as a case if the sample possessed an LGD mutation in a gene that was identified: 1) as a high risk or strong 

candidate ASD gene according SFARI Gene scores (https://gene.sfari.org/database/gene-scoring/), 2) in the 

prioritized SPARK gene list 

(https://simonsfoundation.s3.amazonaws.com/share/SFARI/Prioritized%20SPARK%20Gene%20List_for

%20distribution_27Apr21.xlsx), or 3) to have elevated intolerance to mutation (pLI >= 0.9, LOEUF < 0.35) 

(Karczewski et al. 2020). 

 

Assessing enrichment of de novo mutation in NDD cases for ranked NDD risk genes 

To determine if enrichment of LGD (or missense) in NDD cases relative to unaffected controls is 

observed in highly ranked NDD risk genes, the difference in enrichment among NDD cases and controls 
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("!"##) is calculated per gene by Equation 2. The total number of LGD (or missense) mutations observed 

in cases (#$%&'&) for a certain gene within the test set is divided by the number of NDD cases retrieved 

from denovo-db ($$%&'& 	= 	9,962), and the total number of LGD (or missense) mutations observed in 

controls (#$()*+(,&	) for that gene within the test set is divided by the number of controls ($$()*+(,& 	=

	2,245).  

"!"## = (#$%&'&	/	$$%&'&) 	−	(	#$()*+(,&	/	$$()*+(,&) [Equation 2] 

 

Web resources 

denovo-db, https://denovo-db.gs.washington.edu  

Genome Aggregation Database (gnomAD), https://gnomad.broadinstitute.org/downloads  

Online Mendelian Inheritance in Man (OMIM), https://www.omim.org  

phastCons, http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/ 

Residual Variation Intolerance Score (RVIS), http://genic-intolerance.org/ 

Scikit-learn, https://scikit-learn.org/stable/  

SFARI Gene, https://gene.sfari.org/  
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