Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2013

01-11-2013 | Original Article

Resolution of outcome-induced response conflict by humans after extended training

Auteurs: Sanne de Wit, K. Richard Ridderinkhof, Paul C. Fletcher, Anthony Dickinson

Gepubliceerd in: Psychological Research | Uitgave 6/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Studies of incongruent discrimination learning, where the outcome event of one response acts as the discriminative stimulus for the opposite response, suggest that humans rely on habitual stimulus–response (S–R) associations when outcome–response (O–R) associations would cause response conflict. Here, two experiments were conducted to investigate the robustness of this habitual strategy. In Experiment 1, we found that extensive instrumental discrimination training supported learning about the incongruent R → O contingencies, as assessed by an outcome devaluation test. Differential representations of the stimulus and the (associatively retrieved) outcome may have allowed for goal-directed incongruent performance. Experiment 2 failed to provide evidence for this possibility; direct presentation as well as associative retrieval of the incongruent events (by Pavlovian stimuli) activated the response that was associated with each event in its role of stimulus as opposed to outcome. We did find that participants successfully acquired explicit knowledge of the incongruent contingencies, which raises the possibility that propositional encoding allowed them to overcome the response conflict caused by O–R associations. Alternative associative and propositional accounts of successful goal-directed incongruent performance with extensive training will be discussed.
Literatuur
go back to reference Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quarterly Journal of Experimental Psychology, 34B, 77–98. Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quarterly Journal of Experimental Psychology, 34B, 77–98.
go back to reference Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.PubMedCrossRef Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.PubMedCrossRef
go back to reference Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48–69. doi:10.1038/npp.2009.131.PubMedCrossRef Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48–69. doi:10.​1038/​npp.​2009.​131.PubMedCrossRef
go back to reference Colwill, R. M., & Motzkin, D. K. (1994). Encoding of the unconditioned stimulus in Pavlovian conditioning. Animal Learning & Behavior, 22(4), 384–394.CrossRef Colwill, R. M., & Motzkin, D. K. (1994). Encoding of the unconditioned stimulus in Pavlovian conditioning. Animal Learning & Behavior, 22(4), 384–394.CrossRef
go back to reference Colwill, R. M., & Rescorla, R. A. (1985). Instrumental responding remains sensitive to reinforcer devaluation after extensive training. Journal of Experimental Psychology: Animal Behavior Processes, 11, 520–536.CrossRef Colwill, R. M., & Rescorla, R. A. (1985). Instrumental responding remains sensitive to reinforcer devaluation after extensive training. Journal of Experimental Psychology: Animal Behavior Processes, 11, 520–536.CrossRef
go back to reference Colwill, R. M., & Rescorla, R. A. (1988). The role of response-reinforcer associations increases throughout extended instrumental training. Animal Learning & Behavior, 16(1), 105–111.CrossRef Colwill, R. M., & Rescorla, R. A. (1988). The role of response-reinforcer associations increases throughout extended instrumental training. Animal Learning & Behavior, 16(1), 105–111.CrossRef
go back to reference Corbit, L. H., & Balleine, B. W. (2003). The role of prelimbic cortex in instrumental conditioning. Behavioural Brain Research, 146(1–2), 145–157.PubMedCrossRef Corbit, L. H., & Balleine, B. W. (2003). The role of prelimbic cortex in instrumental conditioning. Behavioural Brain Research, 146(1–2), 145–157.PubMedCrossRef
go back to reference Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRef Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRef
go back to reference de Wit, S., Corlett, P. R., Aitken, M. R., Dickinson, A., & Fletcher, P. C. (2009a). Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. Journal of Neuroscience, 29(36), 11330–11338. doi:10.1523/JNEUROSCI.1639-09.2009.PubMedCrossRef de Wit, S., Corlett, P. R., Aitken, M. R., Dickinson, A., & Fletcher, P. C. (2009a). Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. Journal of Neuroscience, 29(36), 11330–11338. doi:10.​1523/​JNEUROSCI.​1639-09.​2009.PubMedCrossRef
go back to reference de Wit, S., & Dickinson, A. (2009). Associative theories of goal-directed behaviour: a case for animal–human translational models. Psychological Research, 73(4), 463–476.PubMedCrossRef de Wit, S., & Dickinson, A. (2009). Associative theories of goal-directed behaviour: a case for animal–human translational models. Psychological Research, 73(4), 463–476.PubMedCrossRef
go back to reference de Wit, S., Kosaki, Y., Balleine, B., & Dickinson, A. (2006). Dorsomedial prefrontal cortex resolves response conflict in rats. Journal of Neuroscience, 26(19), 5224–5229.PubMedCrossRef de Wit, S., Kosaki, Y., Balleine, B., & Dickinson, A. (2006). Dorsomedial prefrontal cortex resolves response conflict in rats. Journal of Neuroscience, 26(19), 5224–5229.PubMedCrossRef
go back to reference de Wit, S., Niry, D., Wariyar, R., Aitken, M. R. F., & Dickinson, A. (2007). Stimulus-outcome interactions during conditional discrimination learning by rats and humans. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 1–11.PubMedCrossRef de Wit, S., Niry, D., Wariyar, R., Aitken, M. R. F., & Dickinson, A. (2007). Stimulus-outcome interactions during conditional discrimination learning by rats and humans. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 1–11.PubMedCrossRef
go back to reference de Wit, S., Ostlund, S. B., Balleine, B. W., & Dickinson, A. (2009b). Resolution of conflict between goal-directed actions: outcome encoding and neural control processes. Journal of Experimental Psychology: Animal Behavior Processes, 35(3), 382–393. doi:10.1037/a0014793.PubMedCrossRef de Wit, S., Ostlund, S. B., Balleine, B. W., & Dickinson, A. (2009b). Resolution of conflict between goal-directed actions: outcome encoding and neural control processes. Journal of Experimental Psychology: Animal Behavior Processes, 35(3), 382–393. doi:10.​1037/​a0014793.PubMedCrossRef
go back to reference de Wit, S., Standing, H. R., DeVito, E. E., Robinson, O. J., Ridderinkhof, K. R., Robbins, T. W., et al. (2012a). Reliance on habits at the expense of goal-directed control following dopamine precursor depletion. Psychopharmacology (Berl), 219, 621–631.CrossRef de Wit, S., Standing, H. R., DeVito, E. E., Robinson, O. J., Ridderinkhof, K. R., Robbins, T. W., et al. (2012a). Reliance on habits at the expense of goal-directed control following dopamine precursor depletion. Psychopharmacology (Berl), 219, 621–631.CrossRef
go back to reference de Wit, S., Watson, P., Harsay, H. A., Cohen, M. X., van de Vijver, I., & Ridderinkhof, K. R. (2012b). Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. Journal of Neuroscience, 32(35), 12066–12075.PubMedCrossRef de Wit, S., Watson, P., Harsay, H. A., Cohen, M. X., van de Vijver, I., & Ridderinkhof, K. R. (2012b). Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. Journal of Neuroscience, 32(35), 12066–12075.PubMedCrossRef
go back to reference Dickinson, A. (1980). Contemporary animal learning theory. Cambridge: Cambridge University Press. Dickinson, A. (1980). Contemporary animal learning theory. Cambridge: Cambridge University Press.
go back to reference Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning & Behavior, 22(1), 1–18.CrossRef Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning & Behavior, 22(1), 1–18.CrossRef
go back to reference Dickinson, A., Balleine, B., Watt, A., Gonzalez, F., & Boakes, R. (1995). Motivational control after extended instrumental training. Animal Learning & Behavior, 23(2), 197–206.CrossRef Dickinson, A., Balleine, B., Watt, A., Gonzalez, F., & Boakes, R. (1995). Motivational control after extended instrumental training. Animal Learning & Behavior, 23(2), 197–206.CrossRef
go back to reference Dickinson, A., & de Wit, S. (2003). The interaction between discriminative stimuli and outcomes during instrumental learning. Quarterly Journal of Experimental Psychology, 56B(1), 127–139. Dickinson, A., & de Wit, S. (2003). The interaction between discriminative stimuli and outcomes during instrumental learning. Quarterly Journal of Experimental Psychology, 56B(1), 127–139.
go back to reference Dwyer, D. M., Dunn, M. J., Rhodes, S. E. V., & Killcross, A. S. (2010). Lesions of the prelimbic prefrontal cortex prevent response conflict produced by action-outcome associations. The Quarterly Journal of Experimental Psychology, 63(3), 417–424.PubMedCrossRef Dwyer, D. M., Dunn, M. J., Rhodes, S. E. V., & Killcross, A. S. (2010). Lesions of the prelimbic prefrontal cortex prevent response conflict produced by action-outcome associations. The Quarterly Journal of Experimental Psychology, 63(3), 417–424.PubMedCrossRef
go back to reference Evans, D. W., Lewis, M. D., & Iobst, E. (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder. Brain and Cognition, 55(1), 220–234.PubMedCrossRef Evans, D. W., Lewis, M. D., & Iobst, E. (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder. Brain and Cognition, 55(1), 220–234.PubMedCrossRef
go back to reference Everitt, B. J., Dickinson, A., & Robbins, T. W. (2001). The neuropsychological basis of addictive behavior. Brain Research Reviews, 36(2–3), 129–138.PubMedCrossRef Everitt, B. J., Dickinson, A., & Robbins, T. W. (2001). The neuropsychological basis of addictive behavior. Brain Research Reviews, 36(2–3), 129–138.PubMedCrossRef
go back to reference Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., et al. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. American Journal of Psychiatry, 168(7), 718–726. doi:10.1176/appi.ajp.2011.10071062.PubMedCrossRef Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., et al. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. American Journal of Psychiatry, 168(7), 718–726. doi:10.​1176/​appi.​ajp.​2011.​10071062.PubMedCrossRef
go back to reference Greve, W. (2001). Traps and gaps in action explanation: theoretical problems of a psychology of human action. Psychological Review, 108, 435–451.PubMedCrossRef Greve, W. (2001). Traps and gaps in action explanation: theoretical problems of a psychology of human action. Psychological Review, 108, 435–451.PubMedCrossRef
go back to reference Heyes, C., & Dickinson, A. (1990). The intentionality of animal action. Mind and Language, 5, 87–104.CrossRef Heyes, C., & Dickinson, A. (1990). The intentionality of animal action. Mind and Language, 5, 87–104.CrossRef
go back to reference Hogarth, L., Dickinson, A., Wright, A., Kouvaraki, M., & Duka, T. (2007). The role of drug expectancy in the control of human drug seeking. Journal of Experimental Psychology: Animal Behavior Processes, 33(4), 484–496.PubMedCrossRef Hogarth, L., Dickinson, A., Wright, A., Kouvaraki, M., & Duka, T. (2007). The role of drug expectancy in the control of human drug seeking. Journal of Experimental Psychology: Animal Behavior Processes, 33(4), 484–496.PubMedCrossRef
go back to reference Holland, P. C. (2004). Relations between Pavlovian-instrumental transfer and reinforcer devaluation. Journal of Experimental Psychology-Animal Behavior Processes, 30(2), 104–117.PubMedCrossRef Holland, P. C. (2004). Relations between Pavlovian-instrumental transfer and reinforcer devaluation. Journal of Experimental Psychology-Animal Behavior Processes, 30(2), 104–117.PubMedCrossRef
go back to reference Hommel, B. (2003). Planning and Representing Intentional Action. The Scientific World Journal, 3, 593–608.CrossRef Hommel, B. (2003). Planning and Representing Intentional Action. The Scientific World Journal, 3, 593–608.CrossRef
go back to reference James, W. (1890b). The principles of psychology. New York: Dover Publications.CrossRef James, W. (1890b). The principles of psychology. New York: Dover Publications.CrossRef
go back to reference Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13(4), 400–408.PubMedCrossRef Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13(4), 400–408.PubMedCrossRef
go back to reference Kosaki, Y., & Dickinson, A. (2010). Choice and contingency in the development of behavioral autonomy during instrumental conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 36(3), 334–342. doi:10.1037/a0016887.PubMedCrossRef Kosaki, Y., & Dickinson, A. (2010). Choice and contingency in the development of behavioral autonomy during instrumental conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 36(3), 334–342. doi:10.​1037/​a0016887.PubMedCrossRef
go back to reference Pavlov, I. P. (1932). The reply of a physiologist to psychologists. Psychological Review, 39, 91–127.CrossRef Pavlov, I. P. (1932). The reply of a physiologist to psychologists. Psychological Review, 39, 91–127.CrossRef
go back to reference Ridderinkhof, K. R., Forstmann, B. U., Wylie, S., Burle, B., & van den Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of action control: resisting the call of the Sirens. Wylie Interdisciplinary Reviews (WIREs) Cognitive Science, 2, 174–192.CrossRef Ridderinkhof, K. R., Forstmann, B. U., Wylie, S., Burle, B., & van den Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of action control: resisting the call of the Sirens. Wylie Interdisciplinary Reviews (WIREs) Cognitive Science, 2, 174–192.CrossRef
go back to reference Shanks, D. R. (1995). The psychology of associative learning. Cambridge: Cambridge University Press.CrossRef Shanks, D. R. (1995). The psychology of associative learning. Cambridge: Cambridge University Press.CrossRef
go back to reference Thorndike, E. L. (1911). Animal Intelligence: experimental studies. New York: Macmillan.CrossRef Thorndike, E. L. (1911). Animal Intelligence: experimental studies. New York: Macmillan.CrossRef
go back to reference Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27(15), 4019–4026.PubMedCrossRef Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27(15), 4019–4026.PubMedCrossRef
Metagegevens
Titel
Resolution of outcome-induced response conflict by humans after extended training
Auteurs
Sanne de Wit
K. Richard Ridderinkhof
Paul C. Fletcher
Anthony Dickinson
Publicatiedatum
01-11-2013
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2013
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0467-3

Andere artikelen Uitgave 6/2013

Psychological Research 6/2013 Naar de uitgave