Skip to main content
Top
Gepubliceerd in: Journal of Autism and Developmental Disorders 3/2009

01-03-2009 | Original Paper

Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

Auteurs: Flora M. Vaccarino, Elena L. Grigorenko, Karen Müller Smith, Hanna E. Stevens

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 3/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that Fibroblast Growth Factors (FGF), a family of genes that regulate cortical size and connectivity, may be responsible for these developmental alterations. Studies in animal models suggest that mutations in FGF genes lead to altered cortical volume, excitatory cortical neuron number, minicolum pathology, hyperactivity and social deficits. Thus, many risk factors may converge upon FGF-regulated pathogenetic pathways, which alter excitatory/inhibitory balance and cortical modular architecture, and predispose to autism spectrum disorders.
Literatuur
go back to reference American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. DSM-IV (4th edn.). Washington, DC: American Psychiatric Association. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. DSM-IV (4th edn.). Washington, DC: American Psychiatric Association.
go back to reference Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175–183.PubMed Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175–183.PubMed
go back to reference Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMed Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMed
go back to reference Blak, A. A., Naserke, T., Weisenhorn, D. M., Prakash, N., Partanen, J., & Wurst, W. (2005). Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Developmental Dynamics, 233, 1023–1030. doi:10.1002/dvdy.20386.PubMed Blak, A. A., Naserke, T., Weisenhorn, D. M., Prakash, N., Partanen, J., & Wurst, W. (2005). Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Developmental Dynamics, 233, 1023–1030. doi:10.​1002/​dvdy.​20386.PubMed
go back to reference Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23, 364–369. doi:10.1016/j.neuroimage.2004.06.016.PubMed Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23, 364–369. doi:10.​1016/​j.​neuroimage.​2004.​06.​016.PubMed
go back to reference Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42, 318–321. doi:10.1136/jmg.2004.024646.PubMed Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42, 318–321. doi:10.​1136/​jmg.​2004.​024646.PubMed
go back to reference Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switzer, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32, 483–491. doi:10.1111/j.1365-2990.2006.00745.x.PubMed Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switzer, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32, 483–491. doi:10.​1111/​j.​1365-2990.​2006.​00745.​x.PubMed
go back to reference Campbell, D. B., Sutcliffe, J. S., Ebert, P. J., Militerni, R., Bravaccio, C., Trillo, S., et al. (2006). A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 103, 16834–16839. doi:10.1073/pnas.0605296103.PubMed Campbell, D. B., Sutcliffe, J. S., Ebert, P. J., Militerni, R., Bravaccio, C., Trillo, S., et al. (2006). A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 103, 16834–16839. doi:10.​1073/​pnas.​0605296103.PubMed
go back to reference Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMed Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMed
go back to reference Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303. doi:10.1007/s00401-006-0085-5.PubMed Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303. doi:10.​1007/​s00401-006-0085-5.PubMed
go back to reference Chaste, P., Nygren, G., Anckarsater, H., Rastam, M., Coleman, M., Leboyer, M., et al. (2007). Mutation screening of the ARX gene in patients with autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 228–230. doi:10.1002/ajmg.b.30440. Chaste, P., Nygren, G., Anckarsater, H., Rastam, M., Coleman, M., Leboyer, M., et al. (2007). Mutation screening of the ARX gene in patients with autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 228–230. doi:10.​1002/​ajmg.​b.​30440.
go back to reference Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences of the United States of America, 104, 7652–7657. doi:10.1073/pnas.0702225104.PubMed Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences of the United States of America, 104, 7652–7657. doi:10.​1073/​pnas.​0702225104.PubMed
go back to reference Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106–111. doi:10.1002/mrdd.20020.PubMed Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106–111. doi:10.​1002/​mrdd.​20020.PubMed
go back to reference Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi:10.1001/jama.290.3.337.PubMed Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi:10.​1001/​jama.​290.​3.​337.PubMed
go back to reference Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMed Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMed
go back to reference Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi:10.1016/j.ijdevneu.2005.01.003.PubMed Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi:10.​1016/​j.​ijdevneu.​2005.​01.​003.PubMed
go back to reference Davidovitch, M., Patterson, B., & Gartside, P. (1996). Head circumference measurements in children with autism. Journal of Child Neurology, 11, 389–393.PubMedCrossRef Davidovitch, M., Patterson, B., & Gartside, P. (1996). Head circumference measurements in children with autism. Journal of Child Neurology, 11, 389–393.PubMedCrossRef
go back to reference de Carlos, J. A., Lopez-Mascaraque, L., & Valverde, F. (1996). Dynamics of cell migration from the lateral ganglionic eminence in the rat. The Journal of Neuroscience, 16, 6146–6156.PubMed de Carlos, J. A., Lopez-Mascaraque, L., & Valverde, F. (1996). Dynamics of cell migration from the lateral ganglionic eminence in the rat. The Journal of Neuroscience, 16, 6146–6156.PubMed
go back to reference Desai, A. R., & McConnell, S. K. (2000). Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development (Cambridge, England). Supplement, 127, 2863–2872. Desai, A. R., & McConnell, S. K. (2000). Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development (Cambridge, England). Supplement, 127, 2863–2872.
go back to reference Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27. doi:10.1038/ng1933.PubMed Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27. doi:10.​1038/​ng1933.PubMed
go back to reference el-Husseini, A.e.-D., Paterson, J. A., & Shiu, R. P. (1994). Basic fibroblast growth factor (bFGF) and two of its receptors, FGFR1 and FGFR2: Gene expression in the rat brain during postnatal development as determined by quantitative RT-PCR. Molecular and Cellular Endocrinology, 104, 191–200. el-Husseini, A.e.-D., Paterson, J. A., & Shiu, R. P. (1994). Basic fibroblast growth factor (bFGF) and two of its receptors, FGFR1 and FGFR2: Gene expression in the rat brain during postnatal development as determined by quantitative RT-PCR. Molecular and Cellular Endocrinology, 104, 191–200.
go back to reference Feng, J., Schroer, R., Yan, J., Song, W., Yang, C., Bockholt, A., et al. (2006). High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neuroscience Letters, 409, 10–13.PubMed Feng, J., Schroer, R., Yan, J., Song, W., Yang, C., Bockholt, A., et al. (2006). High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neuroscience Letters, 409, 10–13.PubMed
go back to reference Fidler, D. J., Bailey, J. N., & Smalley, S. L. (2000). Macrocephaly in autism and other pervasive developmental disorders. Developmental Medicine and Child Neurology, 42, 737–740.PubMed Fidler, D. J., Bailey, J. N., & Smalley, S. L. (2000). Macrocephaly in autism and other pervasive developmental disorders. Developmental Medicine and Child Neurology, 42, 737–740.PubMed
go back to reference Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.PubMed Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.PubMed
go back to reference Fombonne, E., Roge, B., Claverie, J., Courty, S., & Fremolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29, 113–119.PubMed Fombonne, E., Roge, B., Claverie, J., Courty, S., & Fremolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29, 113–119.PubMed
go back to reference Frantz, G. D., & McConnell, S. K. (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17, 55–61.PubMed Frantz, G. D., & McConnell, S. K. (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17, 55–61.PubMed
go back to reference Fukumoto, A., Hashimoto, T., Ito, H., Nishimura, M., Tsuda, Y., Miyazaki, M., et al. (2008). Growth of head circumference in autistic infants during the first year of life. Journal of Autism and Developmental Disorders, 38, 411–418.PubMed Fukumoto, A., Hashimoto, T., Ito, H., Nishimura, M., Tsuda, Y., Miyazaki, M., et al. (2008). Growth of head circumference in autistic infants during the first year of life. Journal of Autism and Developmental Disorders, 38, 411–418.PubMed
go back to reference Ganat, Y. M., Silbereis, J., Cave, C., Ngu, H., Anderson, G. M., Ohkubo, Y., et al. (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. Journal of Neuroscience, 26, 8609–8621.PubMed Ganat, Y. M., Silbereis, J., Cave, C., Ngu, H., Anderson, G. M., Ohkubo, Y., et al. (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. Journal of Neuroscience, 26, 8609–8621.PubMed
go back to reference Gant, J. C., Thibault, O., Blalock, E. M., Yang, J., Bachstetter, A., Kotick, J., Schauwecker, P. E., Hauser, K.·F., Smith, G. M., Mervis, R., Li, Y. & Barnes, G. N. (2008) Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia (in press). doi:10.1111/j.1528-1167.2008.01725.x. Gant, J. C., Thibault, O., Blalock, E. M., Yang, J., Bachstetter, A., Kotick, J., Schauwecker, P. E., Hauser, K.·F., Smith, G. M., Mervis, R., Li, Y. & Barnes, G. N. (2008) Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia (in press). doi:10.​1111/​j.​1528-1167.​2008.​01725.​x.
go back to reference Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17, 103–111.PubMed Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17, 103–111.PubMed
go back to reference Gharani, N., Benayed, R., Mancuso, V., Brzustowicz, L. M., & Millonig, J. H. (2004). Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Molecular Psychiatry, 9, 474–484.PubMed Gharani, N., Benayed, R., Mancuso, V., Brzustowicz, L. M., & Millonig, J. H. (2004). Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Molecular Psychiatry, 9, 474–484.PubMed
go back to reference Gillberg, C., & de Souza, L. (2002). Head circumference in autism, Asperger syndrome, and ADHD: A comparative study. Developmental Medicine and Child Neurology, 44, 296–300.PubMed Gillberg, C., & de Souza, L. (2002). Head circumference in autism, Asperger syndrome, and ADHD: A comparative study. Developmental Medicine and Child Neurology, 44, 296–300.PubMed
go back to reference Goffin, A., Hoefsloot, L. H., Bosgoed, E., Swillen, A., & Fryns, J. P. (2001). PTEN mutation in a family with Cowden syndrome and autism. American Journal of Medical Genetics, 105, 521–524.PubMed Goffin, A., Hoefsloot, L. H., Bosgoed, E., Swillen, A., & Fryns, J. P. (2001). PTEN mutation in a family with Cowden syndrome and autism. American Journal of Medical Genetics, 105, 521–524.PubMed
go back to reference Hardan, A. Y., Minshew, N. J., & Keshavan, M. S. (2000). Corpus callosum size in autism. Neurology, 55, 1033–1036.PubMed Hardan, A. Y., Minshew, N. J., & Keshavan, M. S. (2000). Corpus callosum size in autism. Neurology, 55, 1033–1036.PubMed
go back to reference Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., & Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59, 1–6.PubMed Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., & Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59, 1–6.PubMed
go back to reference Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.PubMed Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.PubMed
go back to reference Hendry, J., DeVito, T., Gelman, N., Densmore, M., Rajakumar, N., Pavlosky, W., et al. (2006). White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage, 29, 1049–1057.PubMed Hendry, J., DeVito, T., Gelman, N., Densmore, M., Rajakumar, N., Pavlosky, W., et al. (2006). White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage, 29, 1049–1057.PubMed
go back to reference Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192.PubMed Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192.PubMed
go back to reference Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.PubMed Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.PubMed
go back to reference Hodapp, R. M., & Urbano, R. C. (2007). Adult siblings of individuals with Down syndrome versus with autism: Findings from a large-scale US survey. Journal of Intellectual Disability Research, 51, 1018–1029.PubMed Hodapp, R. M., & Urbano, R. C. (2007). Adult siblings of individuals with Down syndrome versus with autism: Findings from a large-scale US survey. Journal of Intellectual Disability Research, 51, 1018–1029.PubMed
go back to reference Huffman, K. J., Garel, S., & Rubenstein, J. L. (2004). Fgf8 regulates the development of intra-neocortical projections. Journal of Neuroscience, 24, 8917–8923.PubMed Huffman, K. J., Garel, S., & Rubenstein, J. L. (2004). Fgf8 regulates the development of intra-neocortical projections. Journal of Neuroscience, 24, 8917–8923.PubMed
go back to reference Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.PubMed Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.PubMed
go back to reference Jones, E. G., & Peters, A. (1984). Cerebral cortex. Cellular components of the cerebral cortex. New York: Plenum. Jones, E. G., & Peters, A. (1984). Cerebral cortex. Cellular components of the cerebral cortex. New York: Plenum.
go back to reference Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.
go back to reference Korada, S., Zheng, W., Basilico, C., Schwartz, M. L., & Vaccarino, F. M. (2002). Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. Journal of Neuroscience, 22, 863–875.PubMed Korada, S., Zheng, W., Basilico, C., Schwartz, M. L., & Vaccarino, F. M. (2002). Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. Journal of Neuroscience, 22, 863–875.PubMed
go back to reference Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.PubMed Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.PubMed
go back to reference Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7, 883–890.PubMed Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7, 883–890.PubMed
go back to reference Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388.PubMed Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388.PubMed
go back to reference Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., et al. (2006). Head circumference and height in autism: A study by the Collaborative Program of Excellence in Autism. American Journal of Medical Genetics. Part A, 140, 2257–2274.PubMed Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., et al. (2006). Head circumference and height in autism: A study by the Collaborative Program of Excellence in Autism. American Journal of Medical Genetics. Part A, 140, 2257–2274.PubMed
go back to reference Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 282–290.PubMed Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 282–290.PubMed
go back to reference Laumonnier, F., Bonnet-Brilhault, F., Gomot, M., Blanc, R., David, A., Moizard, M. P., et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American Journal of Human Genetics, 74, 552–557.PubMed Laumonnier, F., Bonnet-Brilhault, F., Gomot, M., Blanc, R., David, A., Moizard, M. P., et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American Journal of Human Genetics, 74, 552–557.PubMed
go back to reference Lavdas, A. A., Grigoriou, M., Pachnis, V., & Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience, 19, 7881–7888.PubMed Lavdas, A. A., Grigoriou, M., Pachnis, V., & Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience, 19, 7881–7888.PubMed
go back to reference Letinic, K., Zoncu, R., & Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature, 417, 645–649.PubMed Letinic, K., Zoncu, R., & Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature, 417, 645–649.PubMed
go back to reference Levitt, P., Cooper, M. L., & Rakic, P. (1981). Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. Journal of Neuroscience, 1, 27–39.PubMed Levitt, P., Cooper, M. L., & Rakic, P. (1981). Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. Journal of Neuroscience, 1, 27–39.PubMed
go back to reference Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., & Starkstein, S. E. (1999). An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 11, 470–474.PubMed Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., & Starkstein, S. E. (1999). An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 11, 470–474.PubMed
go back to reference Marshall, C. A., & Goldman, J. E. (2002). Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. Journal of Neuroscience, 22, 9821–9830.PubMed Marshall, C. A., & Goldman, J. E. (2002). Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. Journal of Neuroscience, 22, 9821–9830.PubMed
go back to reference Marshall, C. A., Suzuki, S. O., & Goldman, J. E. (2003). Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going? Glia, 43, 52–61.PubMed Marshall, C. A., Suzuki, S. O., & Goldman, J. E. (2003). Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going? Glia, 43, 52–61.PubMed
go back to reference McCaffery, P., & Deutsch, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56.PubMed McCaffery, P., & Deutsch, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56.PubMed
go back to reference Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nature Genetics, 18, 136–141.PubMed Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nature Genetics, 18, 136–141.PubMed
go back to reference Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95, 339–350.PubMed Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95, 339–350.PubMed
go back to reference Mountcastle, V. B. (1997). The columnar organization of the neocortex. [Review]. Brain, 120, 701–722.PubMed Mountcastle, V. B. (1997). The columnar organization of the neocortex. [Review]. Brain, 120, 701–722.PubMed
go back to reference Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.PubMed Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.PubMed
go back to reference Noctor, S. C., Martinez-Cerdeno, V., & Kriegstein, A. R. (2007). Contribution of intermediate progenitor cells to cortical histogenesis. Archives of Neurology, 64, 639–642.PubMed Noctor, S. C., Martinez-Cerdeno, V., & Kriegstein, A. R. (2007). Contribution of intermediate progenitor cells to cortical histogenesis. Archives of Neurology, 64, 639–642.PubMed
go back to reference Ohkubo, Y., Uchida, A. O., Shin, D., Partanen, J., & Vaccarino, F. M. (2004). Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. Journal of Neuroscience, 24, 6057–6069.PubMed Ohkubo, Y., Uchida, A. O., Shin, D., Partanen, J., & Vaccarino, F. M. (2004). Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. Journal of Neuroscience, 24, 6057–6069.PubMed
go back to reference Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., et al. (2003). Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. Journal of Biological Chemistry, 278, 34226–34236.PubMed Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., et al. (2003). Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. Journal of Biological Chemistry, 278, 34226–34236.PubMed
go back to reference Ong, S. H., Hadari, Y. R., Gotoh, N., Guy, G. R., Schlessinger, J., & Lax, I. (2001). Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 6074–6079.PubMed Ong, S. H., Hadari, Y. R., Gotoh, N., Guy, G. R., Schlessinger, J., & Lax, I. (2001). Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 6074–6079.PubMed
go back to reference Ortega, S., Ittmann, M., Tsang, S. H., Ehrich, M., & Basilico, C. (1998). Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 5672–5677.PubMed Ortega, S., Ittmann, M., Tsang, S. H., Ehrich, M., & Basilico, C. (1998). Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 5672–5677.PubMed
go back to reference Palmen, S. J., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Durston, S., Lahuis, B. E., et al. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35, 561–570.PubMed Palmen, S. J., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Durston, S., Lahuis, B. E., et al. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35, 561–570.PubMed
go back to reference Palmen, S. J., & van Engeland, H. (2004). Review on structural neuroimaging findings in autism. Journal of Neural Transmission, 111, 903–929.PubMed Palmen, S. J., & van Engeland, H. (2004). Review on structural neuroimaging findings in autism. Journal of Neural Transmission, 111, 903–929.PubMed
go back to reference Palmen, S. J., van Engeland, H., Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572–2583.PubMed Palmen, S. J., van Engeland, H., Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572–2583.PubMed
go back to reference Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29, 349–358.PubMed Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29, 349–358.PubMed
go back to reference Peters, A., Cifuentes, J. M., & Sethares, C. (1997). The organization of pyramidal cells in area 18 of the rhesus monkey. Cerebral Cortex, 7, 405–421.PubMed Peters, A., Cifuentes, J. M., & Sethares, C. (1997). The organization of pyramidal cells in area 18 of the rhesus monkey. Cerebral Cortex, 7, 405–421.PubMed
go back to reference Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.PubMedCrossRef Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.PubMedCrossRef
go back to reference Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 1145–1149.PubMed Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 1145–1149.PubMed
go back to reference Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154, 1051–1056.PubMed Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154, 1051–1056.PubMed
go back to reference Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J. F., Schwartz, M. L., & Vaccarino, F. M. (2000). Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. Journal of Neuroscience, 20, 5012–5023.PubMed Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J. F., Schwartz, M. L., & Vaccarino, F. M. (2000). Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. Journal of Neuroscience, 20, 5012–5023.PubMed
go back to reference Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial glia. Cerebral Cortex, 13, 541–549.PubMed Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial glia. Cerebral Cortex, 13, 541–549.PubMed
go back to reference Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9.PubMed Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9.PubMed
go back to reference Ringo, J. L. (1991). Neuronal interconnections as a function of brain size. Brain, Behavior and Evolution, 38, 1–6.PubMed Ringo, J. L. (1991). Neuronal interconnections as a function of brain size. Brain, Behavior and Evolution, 38, 1–6.PubMed
go back to reference Samaco, R. C., Hogart, A., & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14, 483–492.PubMed Samaco, R. C., Hogart, A., & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14, 483–492.PubMed
go back to reference Santangelo, S. L., & Tsatsanis, K. (2005). What is known about autism: Genes, brain, and behavior. American Journal of Pharmacogenomics, 5, 71–92.PubMed Santangelo, S. L., & Tsatsanis, K. (2005). What is known about autism: Genes, brain, and behavior. American Journal of Pharmacogenomics, 5, 71–92.PubMed
go back to reference Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V.·S., Shah, N. M., Rubenstein, J. L. & Mucke, L. (2007) Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behavior, 7, 344–354. Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V.·S., Shah, N. M., Rubenstein, J. L. & Mucke, L. (2007) Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behavior, 7, 344–354.
go back to reference Sherr, E. H. (2003). The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): One gene leads to many phenotypes. Current Opinion in Pediatrics, 15, 567–571.PubMed Sherr, E. H. (2003). The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): One gene leads to many phenotypes. Current Opinion in Pediatrics, 15, 567–571.PubMed
go back to reference Schultz, R.T., Win, L., Jackowski, A., Klin, A., Staib, L., Papademetris, X., Babitz, T., Carter, E., Klaiman, C., Feiler, A. & Volkmar, F. (2005) Brain Morphology in Autism Spectrum Disorders: An MRI Study. In: International Meeting for Autism Research (IMFAR). Boston, MA. Schultz, R.T., Win, L., Jackowski, A., Klin, A., Staib, L., Papademetris, X., Babitz, T., Carter, E., Klaiman, C., Feiler, A. & Volkmar, F. (2005) Brain Morphology in Autism Spectrum Disorders: An MRI Study. In: International Meeting for Autism Research (IMFAR). Boston, MA.
go back to reference Shin, D. M., Korada, S., Raballo, R., Shashikant, C. S., Simeone, A., Taylor, J. R., et al. (2004). Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. Journal of Neuroscience, 24, 2247–2258.PubMed Shin, D. M., Korada, S., Raballo, R., Shashikant, C. S., Simeone, A., Taylor, J. R., et al. (2004). Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. Journal of Neuroscience, 24, 2247–2258.PubMed
go back to reference Smith, K. M., Ohkubo, Y., Maragnoli, M. E., Rasin, M. R., Schwartz, M. L., Sestan, N., et al. (2006). Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience, 9, 787–797.PubMed Smith, K. M., Ohkubo, Y., Maragnoli, M. E., Rasin, M. R., Schwartz, M. L., Sestan, N., et al. (2006). Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience, 9, 787–797.PubMed
go back to reference Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30, 405–416.PubMed Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30, 405–416.PubMed
go back to reference Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328.PubMed Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328.PubMed
go back to reference Tao, Y., Black, I. B., & DiCicco-Bloom, E. (1996). Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). Journal of Comparative Neurology, 376, 653–663.PubMed Tao, Y., Black, I. B., & DiCicco-Bloom, E. (1996). Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). Journal of Comparative Neurology, 376, 653–663.PubMed
go back to reference Tanaka, A., Kamiakito, T., Hakamata, Y., Fujii, A., Kuriki, K., & Fukayama, M. (2001). Extensive neuronal localization and neurotrophic function of fibroblast growth factor 8 in the nervous system. Brain Research, 912, 105–115.PubMed Tanaka, A., Kamiakito, T., Hakamata, Y., Fujii, A., Kuriki, K., & Fukayama, M. (2001). Extensive neuronal localization and neurotrophic function of fibroblast growth factor 8 in the nervous system. Brain Research, 912, 105–115.PubMed
go back to reference Trikalinos, T. A., Karvouni, A., Zintzaras, E., Ylisaukko-oja, T., Peltonen, L., Jarvela, I., et al. (2006). A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Molecular Psychiatry, 11, 29–36.PubMed Trikalinos, T. A., Karvouni, A., Zintzaras, E., Ylisaukko-oja, T., Peltonen, L., Jarvela, I., et al. (2006). A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Molecular Psychiatry, 11, 29–36.PubMed
go back to reference Turner, G., Partington, M., Kerr, B., Mangelsdorf, M., & Gecz, J. (2002). Variable expression of mental retardation, autism, seizures, and dystonic hand movements in two families with an identical ARX gene mutation. American Journal of Medical Genetics, 112, 405–411.PubMed Turner, G., Partington, M., Kerr, B., Mangelsdorf, M., & Gecz, J. (2002). Variable expression of mental retardation, autism, seizures, and dystonic hand movements in two families with an identical ARX gene mutation. American Journal of Medical Genetics, 112, 405–411.PubMed
go back to reference Vaccarino, F. M., Fagel, D. M., Ganat, Y., Maragnoli, M. E., Ment, L. R., Ohkubo, Y., et al. (2007). Astroglial cells in development, regeneration, and repair. Neuroscientist, 13, 173–185.PubMed Vaccarino, F. M., Fagel, D. M., Ganat, Y., Maragnoli, M. E., Ment, L. R., Ohkubo, Y., et al. (2007). Astroglial cells in development, regeneration, and repair. Neuroscientist, 13, 173–185.PubMed
go back to reference Vaccarino, F. M., Schwartz, M. L., Hartigan, D., & Leckman, J. F. (1995). Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cerebral Cortex, 5, 64–78.PubMed Vaccarino, F. M., Schwartz, M. L., Hartigan, D., & Leckman, J. F. (1995). Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cerebral Cortex, 5, 64–78.PubMed
go back to reference Vaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., et al. (1999b). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience, 2, 246–253.PubMed Vaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., et al. (1999b). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience, 2, 246–253.PubMed
go back to reference Vaccarino, F. M., Schwartz, M. L., Raballo, R., Rhee, J., & Lyn-Cook, R. (1999a). Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Current Topics in Developmental Biology, 46, 179–200.PubMed Vaccarino, F. M., Schwartz, M. L., Raballo, R., Rhee, J., & Lyn-Cook, R. (1999a). Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Current Topics in Developmental Biology, 46, 179–200.PubMed
go back to reference Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 45, 135–170.PubMed Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 45, 135–170.PubMed
go back to reference Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.PubMed Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.PubMed
go back to reference Wilke, T. A., Gubbels, S., Schwartz, J., & Richman, J. M. (1997). Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Developmental Dynamics, 210, 41–52.PubMed Wilke, T. A., Gubbels, S., Schwartz, J., & Richman, J. M. (1997). Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Developmental Dynamics, 210, 41–52.PubMed
go back to reference Woodhouse, W., Bailey, A., Rutter, M., Bolton, P., Baird, G., & Le Couteur, A. (1996). Head circumference in autism and other pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 37, 665–671.PubMed Woodhouse, W., Bailey, A., Rutter, M., Bolton, P., Baird, G., & Le Couteur, A. (1996). Head circumference in autism and other pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 37, 665–671.PubMed
go back to reference Wuechner, C., Nordqvist, A. C., Winterpacht, A., Zabel, B., & Schalling, M. (1996). Developmental expression of splicing variants of fibroblast growth factor receptor 3 (FGFR3) in mouse. International Journal of Developmental Biology, 40, 1185–1188.PubMed Wuechner, C., Nordqvist, A. C., Winterpacht, A., Zabel, B., & Schalling, M. (1996). Developmental expression of splicing variants of fibroblast growth factor receptor 3 (FGFR3) in mouse. International Journal of Developmental Biology, 40, 1185–1188.PubMed
Metagegevens
Titel
Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism
Auteurs
Flora M. Vaccarino
Elena L. Grigorenko
Karen Müller Smith
Hanna E. Stevens
Publicatiedatum
01-03-2009
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 3/2009
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-008-0653-8

Andere artikelen Uitgave 3/2009

Journal of Autism and Developmental Disorders 3/2009 Naar de uitgave