Skip to main content

Genes and Cell Type Specification in Cerebellar Development

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

One of the key goals of neural development is to make specific cell types that originate from multipotent progenitor cells. The process of cell specification is only beginning to be understood. Evidence thus far suggests that it occurs in a stepwise fashion, and it is likely that each step requires the coordinated expression of a unique set of genes. The cerebellum is an excellent model system for understanding cell fate questions because it contains only a handful of defined cell types that are each located in a specific lamina and are therefore easily identified. These features have made the cerebellum an essential brain region in the understanding of the gene networks that give rise to specific cell types during development. This chapter will first discuss recent advances in parsing the pathways necessary to produce specific cerebellar cell types. Next, the open-source cerebellar GRiTS (Gene Regulation in Time and Space) project (CBGRiTS.org), which has amassed a microarray-based readout of cerebellar gene expression on a daily basis during embryogenesis and every 3 days postnatally, will be discussed. Finally, efforts to mine this transcriptomic information using novel bioinformatic tools to search for new genes that may confer cell-type specificity during cerebellar development will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akazawa C, Ishibashi M, Shimizu C et al (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270:8730–8738

    Article  PubMed  CAS  Google Scholar 

  • Alder J, Lee KJ, Jessell TM et al (1999) Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci 2:535–540

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1985a) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1985b) Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol 231:27–41

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca Raton, p 783

    Google Scholar 

  • Aruga J, Nagai T, Tokuyama T et al (1996) The mouse zic gene family. Homologues of the Drosophila pair-rule gene odd-paired. J Biol Chem 271:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Aruga J, Minowa O, Yaginuma H et al (1998) Mouse Zic1 is involved in cerebellar development. J Neurosci 18:284–293

    PubMed  CAS  Google Scholar 

  • Aruga J, Inoue T, Hoshino J et al (2002) Zic2 controls cerebellar development in cooperation with Zic1. J Neurosci 22:218–225

    PubMed  CAS  Google Scholar 

  • Bao L, Peirce JL, Zhou M et al (2007) An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes. Hum Mol Genet 16:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL et al (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    Article  PubMed  CAS  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100

    Article  PubMed  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA et al (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  PubMed  CAS  Google Scholar 

  • Fogarty M, Grist M, Gelman D et al (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27:10935–10946

    Article  PubMed  CAS  Google Scholar 

  • Gazit R, Krizhanovsky V, Ben-Arie N (2004) Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development 131:903–913

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi P, Parras C, Guillemot F et al (2009) Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol 328:422–433

    Article  PubMed  CAS  Google Scholar 

  • Grinberg I, Northrup H, Ardinger H et al (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in dandy-walker malformation. Nat Genet 36:1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo-Sanchez M, Millet S, Bloch-Gallego E et al (2005) Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. Brain Res Rev 49:134–149

    Article  PubMed  Google Scholar 

  • Hoshino M, Nakamura S, Mori K et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  PubMed  CAS  Google Scholar 

  • Huard JM, Youngentob SL, Goldstein BJ et al (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400:469–486

    Article  PubMed  CAS  Google Scholar 

  • Huard JM, Forster CC, Carter ML et al (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126:1927–1935

    PubMed  CAS  Google Scholar 

  • Ishibashi M (2004) Molecular mechanisms for morphogenesis of the central nervous system in mammals. Anat Sci Int 79:226–234

    Article  PubMed  CAS  Google Scholar 

  • Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci 24:2202–2211

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235:2376–2385

    Article  PubMed  Google Scholar 

  • Kawaguchi Y, Cooper B, Gannon M et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32:128–134

    Article  PubMed  CAS  Google Scholar 

  • Kozar K, Sicinski P (2005) Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes. Cell Cycle 4:388–391

    Article  PubMed  CAS  Google Scholar 

  • Laine J, Axelrad H, Rahbi N (1992) Intermediate cells of Lugaro are present in the immature rat cerebellar cortex at an earlier stage than previously thought. Neurosci Lett 145:225–228

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Cho JH, Hwang WS et al (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Dev Dyn 217:361–367

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Carletti B, Williams IM et al (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    Article  PubMed  CAS  Google Scholar 

  • Lutolf S, Radtke F, Aguet M et al (2002) Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129:373–385

    PubMed  CAS  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  PubMed  CAS  Google Scholar 

  • Machold RP, Kittell DJ, Fishell GJ (2007) Antagonism between Notch and bone morphogenetic protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip. Neural Dev 2:5

    Article  PubMed  Google Scholar 

  • Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41:281–294

    Article  PubMed  CAS  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Kamiya Y, Morikawa M (2009) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51

    Article  PubMed  Google Scholar 

  • Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26:12226–12236

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Imai T, Okabe M (2002) Musashi: a translational regulator of cell fate. J Cell Sci 115:1355–1359

    PubMed  CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A et al (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Wine-Lee L, Ahn KJ et al (2006) Genetic analyses demonstrate that bone morphogenetic protein signaling is required for embryonic cerebellar development. J Neurosci 26:1896–1905

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Fletcher C, Mason CA et al (1990) Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci 87:4189–4192

    Article  PubMed  CAS  Google Scholar 

  • Schuurmans C, Guillemot F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12:26–34

    Article  PubMed  CAS  Google Scholar 

  • Sekerkova G, Ilijic E, Mugnaini E (2004) Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience 127:845–858

    Article  PubMed  CAS  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    Article  PubMed  CAS  Google Scholar 

  • Silbereis J, Cheng E, Ganat YM et al (2009) Precursors with glial fibrillary acidic protein promoter activity transiently generate GABA interneurons in the postnatal cerebellum. Stem Cells 27:1152–1163

    Article  PubMed  CAS  Google Scholar 

  • Silbereis J, Heintz T, Taylor MM et al (2010) Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Mol Cell Neurosci 44:362–373

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Liu XL, Tomoda T et al (2001) Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31:557–568

    Article  PubMed  CAS  Google Scholar 

  • Song MJ, Lewis CK, Lance ER et al (2009a) Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data. EURASIP J Bioinform Syst Biol 2009:545176

    Article  Google Scholar 

  • Song M, Ouyang Z, Liu ZL (2009b) Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast. IET Syst Biol 3:203–218

    Article  PubMed  CAS  Google Scholar 

  • Taber Pierce E (1975) Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiographic study. Brain Res 95:503–518

    Article  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  PubMed  CAS  Google Scholar 

  • Wassef M, Joyner AL (1997) Early mesencephalon/metencephalon patterning and development of the cerebellum. Perspect Dev Neurobiol 5:3–16

    PubMed  CAS  Google Scholar 

  • Weller M, Krautler N, Mantei N et al (2006) Jagged1 ablation results in cerebellar granule cell migration defects and depletion of Bergmann glia. Dev Neurosci 28:70–80

    Article  PubMed  CAS  Google Scholar 

  • Wingate RJ (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Aster JC, Blacklow SC et al (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26:484–489

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108

    Article  PubMed  Google Scholar 

  • Ybot-Gonzalez P, Cogram P, Gerrelli D et al (2002) Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development 129:2507–2517

    PubMed  CAS  Google Scholar 

  • Ybot-Gonzalez P, Gaston-Massuet C, Girdler G et al (2007) Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development 134:3203–3211

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S (1996) Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat Embryol 194:223–234

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Goldman JE (1996) Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum. J Comp Neurol 370:536–550

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Kwan KM, Mailloux CM et al (2007) LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci 104:13182–13186

    Article  PubMed  CAS  Google Scholar 

  • Zordan P, Croci L, Hawkes R et al (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:1726–1735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Larouche, M., Goldowitz, D. (2013). Genes and Cell Type Specification in Cerebellar Development. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_15

Download citation

Publish with us

Policies and ethics