Skip to main content

Development of Glutamatergic and GABAergic Synapses

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

More than a century ago, Ramón y Cajal based on the cerebellum his initial description of neurons labeled with the silver impregnation method, obtaining evidence in favor of the neuron doctrine. It is perhaps less known that Cajal also made an accurate description of cerebellar development, laying the foundation for successive studies of cell migration, neuronal differentiation, and synaptogenesis. Building on this work, subsequent analyses of cerebellar development have greatly increased the understanding of cellular and molecular events that regulate the assembly of synaptic circuits in the central nervous system. What makes the cerebellum a particularly useful model system is its delayed course of development, largely extending into postnatal life. This chapter describes the current state of knowledge relating to cerebellar synapse development, and reviews recent studies on the molecular and activity-dependent mechanisms that control the spatial specificity of synaptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad-Annuar A, Ciani L, Simeonidis I et al (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972a) Postnatal development of the cerebellar cortex in the rat.III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972b) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972c) Postnatal development of the cerebellar cortex in the rat.II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–464

    Article  PubMed  CAS  Google Scholar 

  • Ango F, di Cristo G, Higashiyama H et al (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell 119:257–272

    Article  PubMed  CAS  Google Scholar 

  • Ango F, Wu C, Van der Want JJ et al (2008) Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol 6:e103

    Article  PubMed  CAS  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  PubMed  CAS  Google Scholar 

  • Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28:93–98

    Article  PubMed  CAS  Google Scholar 

  • Bosman LW, Takechi H, Hartmann J et al (2008) Homosynaptic long-term synaptic potentiation of the "winner" climbing fiber synapse in developing Purkinje cells. J Neurosci 28:798–807

    Article  PubMed  CAS  Google Scholar 

  • Bravin M, Morando L, Vercelli A et al (1999) Control of spine formation by electrical activity in the adult rat cerebellum. Proc Natl Acad Sci USA 96:1704–1709

    Article  PubMed  CAS  Google Scholar 

  • Briatore F, Patrizi A, Viltono L et al (2010) Quantitative organization of GABAergic synapses in the molecular layer of the mouse cerebellar cortex. PLoS ONE 5:e12119

    Article  PubMed  CAS  Google Scholar 

  • Cajal S (1890) Sobre ciertos elementos bipolares del cerebelo joven y algunos detalles mas acerca del crecimiento y evolución de las fibras cerebelosas. Gaceta Sanitaria, Barcelona, 10 Febrero p 1–20

    Google Scholar 

  • Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Cathala L, Holderith NB, Nusser Z et al (2005) Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat Neurosci 8:1310–1318

    Article  PubMed  CAS  Google Scholar 

  • Celio M (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  PubMed  CAS  Google Scholar 

  • Cesa R, Strata P (2009) Axonal competition in the synaptic wiring of the cerebellar cortex during development and in the mature cerebellum. Neuroscience 162:624–632

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91

    Article  PubMed  CAS  Google Scholar 

  • Coutinho V, Mutoh J, Knöpfel T (2004) Functional topology of the mossy fibre-granule cell–Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum. Eur J Neurosci 20:740–748

    Article  PubMed  CAS  Google Scholar 

  • Craig AM, Lichtman JW (2001) Synapse formation and maturation. In: Cowan WM, Südhof TC, Stevens CF (eds) Synapses. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7:567–578

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E, Vos B, Maex R (2000) The function of cerebellar Golgi cells revisited. Prog Brain Res 124:81–93

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333

    Article  PubMed  Google Scholar 

  • Dieudonné S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20:1837–1848

    PubMed  Google Scholar 

  • Dugué GP, Dumoulin A, Triller A et al (2005) Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 25:6490–6498

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin A, Triller A, Dieudonné S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21:6045–6057

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Google Scholar 

  • Eisenman LM, Schalekamp MP, Voogd J (1991) Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Dev Brain Res 60:261–266

    Article  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Panzanelli P, Kralic JE et al (2006) Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the a1 subunit in Purkinje cells. J Neurosci 26:3245–3255

    Article  PubMed  CAS  Google Scholar 

  • Garin N, Escher G (2001) The development of inhibitory synaptic specializations in the mouse deep cerebellar nuclei. Neuroscience 105:431–441

    Article  PubMed  CAS  Google Scholar 

  • Geurts FJ, De Schutter E, Dieudonné S (2003) Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2:290–299

    Article  PubMed  Google Scholar 

  • Greif KF, Erlander MG, Tillakaratne NJ et al (1991) Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem Res 16:235–242

    Article  PubMed  CAS  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  PubMed  CAS  Google Scholar 

  • Hámori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220:367–377

    Article  Google Scholar 

  • Harvey RJ, Napper RM (1991) Quantitative studies on the mammalian cerebellum. Prog Neurobiol 36:437–463

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Yoshida T, Sakimura K et al (2009a) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162:601–611

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Ichikawa R, Kitamura K et al (2009b) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–118

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA (1992) Development of glutamic acid decarboxylase-immunoreactive elements in the cerebellar cortex of normal and lurcher mutant mice. J Comp Neurol 315:85–97

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Pang Z, Bao D et al (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa R, Miyazaki T, Kano M et al (2002) Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor delta 2. J Neurosci 22:8487–8503

    PubMed  CAS  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Ito S, Takeichi M (2009) Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro. Proc Natl Acad Sci USA 106:12782–12787

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M, Farrant M, Cull-Candy SG (1995) Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol 485:419–435

    PubMed  CAS  Google Scholar 

  • Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19:154–161

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M et al (1997) Impaired parallel fiber→Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J Neurosci 17:9613–9623

    PubMed  CAS  Google Scholar 

  • Lainé J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374

    Article  PubMed  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A et al (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842

    PubMed  CAS  Google Scholar 

  • Larramendi LMH (1969) Analysis of synaptogenesis in the cerebellum of the mouse. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago

    Google Scholar 

  • Li J, Ashley J, Budnik V et al (2007) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55:741–755

    Article  PubMed  CAS  Google Scholar 

  • Lichtman JW, Smith SJ (2008) Seeing circuits assemble. Neuron 60:441–448

    Article  PubMed  CAS  Google Scholar 

  • Llinás RR, Walton KD, Lang EJ (2004) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Lohof AM, Delhaye-Bouchaud N, Mariani J (1996) Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev Neurosci 7:85–101

    Article  PubMed  CAS  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ et al (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315:318–322

    Article  PubMed  CAS  Google Scholar 

  • Lorenzetto E, Caselli L, Feng G et al (2009) Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. Proc Natl Acad Sci USA 106:16475–16480

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Gregory E (1984) Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci 4:1715–1735

    PubMed  CAS  Google Scholar 

  • Matsuda K, Miura E, Miyazaki T et al (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328:363–368

    Article  PubMed  CAS  Google Scholar 

  • McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425–450

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin BJ, Wood JG, Saito K (1975) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 85:355–371

    Article  PubMed  CAS  Google Scholar 

  • Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19

    Article  PubMed  CAS  Google Scholar 

  • Missler M, Zhang W, Rohlmann A et al (2003) Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423:939–948

    Article  PubMed  CAS  Google Scholar 

  • Miura E, Iijima T, Yuzaki M et al (2006) Distinct expression of Cbln family mRNAs in developing and adult mouse brains. Eur J Neurosci 24:750–760

    Article  PubMed  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H et al (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17:2563–2572

    Article  PubMed  Google Scholar 

  • Miyazaki T, Hashimoto K, Shin HS et al (2004) P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 24:1734–1743

    Article  PubMed  CAS  Google Scholar 

  • Morara S, van der Want JJ, de Weerd H et al (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108:655–671

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Sekerková G, Martina M (2011) The unipolar brush cell: A remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki G, Hirano T (2008) Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses. Eur J Neurosci 28:2393–2400

    Article  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450:342–353

    Article  PubMed  CAS  Google Scholar 

  • Palay S, Chan-Palay V (1974) Cerebellar Cortex: Cytology and Organization. Springer, Berlin

    Book  Google Scholar 

  • Palkovits M, Mezey E, Hámori J et al (1977) Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res 28:189–209

    Article  PubMed  CAS  Google Scholar 

  • Patrizi A, Scelfo B, Viltono L et al (2008) Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc Natl Acad Sci USA 105:13151–13156

    Article  PubMed  CAS  Google Scholar 

  • Pouzat C, Hestrin S (1997) Developmental regulation of basket/stellate cell→Purkinje cell synapses in the cerebellum. J Neurosci 17:9104–9112

    PubMed  CAS  Google Scholar 

  • Robain O, Bideau I, Farkas E (1981) Developmental changes of synapses in the cerebellar cortex of the rat. A quantitative analysis. Brain Res 206:1–8

    Article  PubMed  CAS  Google Scholar 

  • Rosina A, Morara S, Provini L (1999) GAT-1 developmental expression in the rat cerebellar cortex: basket and pinceau formation. Neuroreport 10:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Sahin M, Hockfield S (1990) Molecular identification of the Lugaro cell in the cat cerebellar cortex. J Comp Neurol 301:575–584

    Article  PubMed  CAS  Google Scholar 

  • Satz JS, Ostendorf AP, Hou S et al (2010) Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 30:14560–14572

    Article  PubMed  CAS  Google Scholar 

  • Schild RF (1970) On the inferior olive of the albino rat. J Comp Neurol 140:255–260

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Oberdick J, Rossi F et al (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130:601–615

    Article  PubMed  CAS  Google Scholar 

  • Shimono T, Nosaka S, Sasaki K (1976) Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex. Brain Res 108:279–294

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui TJ, Craig AM (2010) Synaptic organizing complexes. Curr Opin Neurobiol. doi:10.1016/j.conb.2010.08.016

    PubMed  Google Scholar 

  • Simat M, Parpan F, Fritschy JM (2007a) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83

    Article  PubMed  CAS  Google Scholar 

  • Simat M, Ambrosetti L, Lardi-Studler B et al (2007b) GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci 26:2239–2256

    Article  PubMed  Google Scholar 

  • Sotelo C (1990) Cerebellar synaptogenesis: what can we learn from mutant mice. J Exp Biol 153:225–249

    PubMed  CAS  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (2008) Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells. J Comp Neurol 506:240–262

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2001) The synaptic cleft and synaptic cell adhesion. In: Cowan WM, Südhof TC, Stevens CF (eds) Synapses. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Sugita F, Saito S, Tang J et al (2002) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435–445

    Article  Google Scholar 

  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742

    Article  PubMed  CAS  Google Scholar 

  • Takayama C, Inoue Y (2004) GABAergic signaling in the developing cerebellum. Anat Sci Int 79:124–136

    Article  PubMed  CAS  Google Scholar 

  • Takayama C, Inoue Y (2005) Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Dev Brain Res 158:41–49

    Article  CAS  Google Scholar 

  • Takeda T, Maekawa K (1989) Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens. Neuroscience 32:99–111

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Miyazaki T, Watanabe M et al (2005) Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 25:2146–2156

    Article  PubMed  CAS  Google Scholar 

  • Teune TM, van der Burg J, de Zeeuw CI et al (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392:164–178

    Article  PubMed  CAS  Google Scholar 

  • Trigo FF, Bouhours B, Rostaing P et al (2010) Presynaptic miniature GABAergic currents in developing interneurons. Neuron 66:235–247

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M et al (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Umemori H, Linhoff MW, Ornitz DM et al (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118:257–270

    Article  PubMed  CAS  Google Scholar 

  • Vicini S, Ortinski P (2004) Genetic manipulations of GABAA receptor in mice make inhibition exciting. Pharmacol Ther 103:109–120

    Article  PubMed  CAS  Google Scholar 

  • Viltono L, Patrizi A, Fritschy JM et al (2008) Synaptogenesis in the cerebellar cortex: Differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol 508:579–591

    Article  PubMed  Google Scholar 

  • Voogd J (2004) Cerebellum. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Waite A, Tinsley CL, Locke M et al (2009) The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med 41:344–359

    Article  PubMed  CAS  Google Scholar 

  • Waites CM, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274

    Article  PubMed  CAS  Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491

    Article  PubMed  CAS  Google Scholar 

  • Wassef M, Sotelo C (1984) Asynchrony in the expression of guanosine 3':5'-phosphate-dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience 13:1217–1241

    Article  PubMed  CAS  Google Scholar 

  • Wassef M, Simons J, Tappaz ML et al (1986) Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Brain Res 399:125–135

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821–829

    Article  PubMed  CAS  Google Scholar 

  • Watt AJ, Cuntz H, Mori M et al (2009) Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 12:463–473

    Article  PubMed  CAS  Google Scholar 

  • Wulff P, Goetz T, Leppä E et al (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10:923–929

    Article  PubMed  CAS  Google Scholar 

  • Wulff P, Schonewille M, Renzi M et al (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Yan XX, Ribak CE (1998) Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. Dev Brain Res 111:253–269

    Article  CAS  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M (2003) The delta2 glutamate receptor: ten years later. Neurosci Res 46:11–22

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M (2010) Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers. Eur J Neurosci 32:191–197

    Article  PubMed  Google Scholar 

  • Zhao HM, Wenthold RJ, Petralia RS (1998) Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J Neurosci 18:5517–5528

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sassoè-Pognetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Sassoè-Pognetto, M., Patrizi, A. (2013). Development of Glutamatergic and GABAergic Synapses. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_12

Download citation

Publish with us

Policies and ethics