Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2015

01-03-2015 | Original Article

Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?

Auteurs: Daniel J. Sanchez, Eric N. Yarnik, Paul J. Reber

Gepubliceerd in: Psychological Research | Uitgave 2/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603–623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations.
Literatuur
go back to reference Abrahamse, E. L., Jiménez, L., Deroost, N., van den Broek, E. L., & Clegg, B. A. (2010a). Controlled response selection benefits explicit, but not implicit sequence learning. In E. L. Abrahamse (Ed.), Serial action and perception (pp. 131–154). Enschede: University of Twente. Abrahamse, E. L., Jiménez, L., Deroost, N., van den Broek, E. L., & Clegg, B. A. (2010a). Controlled response selection benefits explicit, but not implicit sequence learning. In E. L. Abrahamse (Ed.), Serial action and perception (pp. 131–154). Enschede: University of Twente.
go back to reference Abrahamse, E. L., Jiménez, L., Verwey, W. B., & Clegg, B. A. (2010b). Representing serial action and perception. Psychonomic Bulletin and Review, 17(5), 603–623.CrossRefPubMed Abrahamse, E. L., Jiménez, L., Verwey, W. B., & Clegg, B. A. (2010b). Representing serial action and perception. Psychonomic Bulletin and Review, 17(5), 603–623.CrossRefPubMed
go back to reference Brindza, J., Szweda, J., Liao, Q., Jiang, Y., & Striegel, A. (2009). WiiLab: bringing together the Nintendo Wiimote and MATLAB. In Frontiers in education conference, 2009. FIE’09. 39th IEEE (pp. 1–6). IEEE. Brindza, J., Szweda, J., Liao, Q., Jiang, Y., & Striegel, A. (2009). WiiLab: bringing together the Nintendo Wiimote and MATLAB. In Frontiers in education conference, 2009. FIE’09. 39th IEEE (pp. 1–6). IEEE.
go back to reference Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences, 2(10), 406–416.CrossRefPubMed Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences, 2(10), 406–416.CrossRefPubMed
go back to reference Clegg, B. A. (2005). Stimulus-specific sequence representation in serial reaction time tasks. The Quarterly Journal of Experimental Psychology Section A, 58(6), 1087–1101.CrossRef Clegg, B. A. (2005). Stimulus-specific sequence representation in serial reaction time tasks. The Quarterly Journal of Experimental Psychology Section A, 58(6), 1087–1101.CrossRef
go back to reference Deroost, N., & Soetens, E. (2006a). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research, 70(2), 88–102.CrossRefPubMed Deroost, N., & Soetens, E. (2006a). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research, 70(2), 88–102.CrossRefPubMed
go back to reference Deroost, N., & Soetens, E. (2006b). The role of response selection in sequence learning. Quarterly Journal of Experimental Psychology, 59(3), 449–456.CrossRef Deroost, N., & Soetens, E. (2006b). The role of response selection in sequence learning. Quarterly Journal of Experimental Psychology, 59(3), 449–456.CrossRef
go back to reference Dienes, Z., & Berry, D. (1997). Implicit learning: below the subjective threshold. Psychonomic Bulletin and Review, 4(1), 3–23.CrossRef Dienes, Z., & Berry, D. (1997). Implicit learning: below the subjective threshold. Psychonomic Bulletin and Review, 4(1), 3–23.CrossRef
go back to reference Gobel, E. W., Parrish, T. B., & Reber, P. J. (2011a). Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. NeuroImage, 58(4), 1150–1157.CrossRefPubMedCentralPubMed Gobel, E. W., Parrish, T. B., & Reber, P. J. (2011a). Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. NeuroImage, 58(4), 1150–1157.CrossRefPubMedCentralPubMed
go back to reference Gobel, E. W., Sanchez, D. J., & Reber, P. J. (2011b). Integration of temporal and ordinal information during serial interception sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(4), 994–1000.CrossRefPubMedCentralPubMed Gobel, E. W., Sanchez, D. J., & Reber, P. J. (2011b). Integration of temporal and ordinal information during serial interception sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(4), 994–1000.CrossRefPubMedCentralPubMed
go back to reference Jiménez, L., Vaquero, J. M. M., & Lupiáñez, J. (2006). Qualitative differences between implicit and explicit sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(3), 475–490.CrossRefPubMed Jiménez, L., Vaquero, J. M. M., & Lupiáñez, J. (2006). Qualitative differences between implicit and explicit sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(3), 475–490.CrossRefPubMed
go back to reference Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316–339.CrossRefPubMed Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316–339.CrossRefPubMed
go back to reference Koch, I. (2007). Anticipatory response control in motor sequence learning: evidence from stimulus-response compatibility. Human Movement Science, 26(2), 257–274.CrossRefPubMed Koch, I. (2007). Anticipatory response control in motor sequence learning: evidence from stimulus-response compatibility. Human Movement Science, 26(2), 257–274.CrossRefPubMed
go back to reference Korman, M., Raz, N., Flash, T., & Karni, A. (2003). Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proceedings of the National Academy of Sciences, 100(21), 12492–12497.CrossRef Korman, M., Raz, N., Flash, T., & Karni, A. (2003). Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proceedings of the National Academy of Sciences, 100(21), 12492–12497.CrossRef
go back to reference MATLAB (Version 7.9.0). (2009). Natick: The MathWorks Inc. MATLAB (Version 7.9.0). (2009). Natick: The MathWorks Inc.
go back to reference Meier, B., & Cock, J. (2010). Are correlated streams of information necessary for implicit sequence learning? Acta Psychologica, 133(1), 17–27.CrossRefPubMed Meier, B., & Cock, J. (2010). Are correlated streams of information necessary for implicit sequence learning? Acta Psychologica, 133(1), 17–27.CrossRefPubMed
go back to reference Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 19(1), 1–32.CrossRef Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 19(1), 1–32.CrossRef
go back to reference O’Reilly, J. X., McCarthy, K. J., Capizzi, M., & Nobre, A. C. (2008). Acquisition of the temporal and ordinal structure of movement sequences in incidental learning. Journal of Neurophysiology, 99(5), 2731–2735.CrossRefPubMed O’Reilly, J. X., McCarthy, K. J., Capizzi, M., & Nobre, A. C. (2008). Acquisition of the temporal and ordinal structure of movement sequences in incidental learning. Journal of Neurophysiology, 99(5), 2731–2735.CrossRefPubMed
go back to reference Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110(5), 861–871.CrossRefPubMed Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110(5), 861–871.CrossRefPubMed
go back to reference Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning and Memory, 1(4), 217–229.PubMed Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning and Memory, 1(4), 217–229.PubMed
go back to reference Reber, P. J., & Squire, L. R. (1998). Encapsulation of implicit and explicit memory in sequence learning. Journal of Cognitive Neuroscience, 10(2), 248–263.CrossRefPubMed Reber, P. J., & Squire, L. R. (1998). Encapsulation of implicit and explicit memory in sequence learning. Journal of Cognitive Neuroscience, 10(2), 248–263.CrossRefPubMed
go back to reference Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: determining what is learned about sequence structure. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20(3), 585–594.CrossRef Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: determining what is learned about sequence structure. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20(3), 585–594.CrossRef
go back to reference Remillard, G. (2003). Pure perceptual-based sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(4), 581–597.CrossRefPubMed Remillard, G. (2003). Pure perceptual-based sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(4), 581–597.CrossRefPubMed
go back to reference Sanchez, D. J., Gobel, E. W., & Reber, P. J. (2010). Performing the unexplainable: implicit task performance reveals individually reliable sequence learning without explicit knowledge. Psychonomic Bulletin and Review, 17(6), 790–796.CrossRefPubMed Sanchez, D. J., Gobel, E. W., & Reber, P. J. (2010). Performing the unexplainable: implicit task performance reveals individually reliable sequence learning without explicit knowledge. Psychonomic Bulletin and Review, 17(6), 790–796.CrossRefPubMed
go back to reference Sanchez, D. J., & Reber, P. J. (2012). Operating characteristics of the implicit learning system supporting serial interception sequence learning. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 439–452.PubMed Sanchez, D. J., & Reber, P. J. (2012). Operating characteristics of the implicit learning system supporting serial interception sequence learning. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 439–452.PubMed
go back to reference Sanchez, D. J., & Reber, P. J. (2013). Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning. Cognition, 126(3), 341–351.CrossRefPubMedCentralPubMed Sanchez, D. J., & Reber, P. J. (2013). Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning. Cognition, 126(3), 341–351.CrossRefPubMedCentralPubMed
go back to reference Schacter, D. L., Dobbins, I. G., & Schnyer, D. M. (2004). Specificity of priming: a cognitive neuroscience perspective. Nature Reviews Neuroscience, 5(11), 853–862.CrossRefPubMed Schacter, D. L., Dobbins, I. G., & Schnyer, D. M. (2004). Specificity of priming: a cognitive neuroscience perspective. Nature Reviews Neuroscience, 5(11), 853–862.CrossRefPubMed
go back to reference Schwarb, H., & Schumacher, E. (2010). Implicit sequence learning is represented by stimulus-response rules. Memory and Cognition, 38(6), 677–678.CrossRefPubMed Schwarb, H., & Schumacher, E. (2010). Implicit sequence learning is represented by stimulus-response rules. Memory and Cognition, 38(6), 677–678.CrossRefPubMed
go back to reference Schwarb, H., & Schumacher, E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Advances in Cognitive Psychology, 8(2), 165–178.CrossRefPubMedCentralPubMed Schwarb, H., & Schumacher, E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Advances in Cognitive Psychology, 8(2), 165–178.CrossRefPubMedCentralPubMed
go back to reference Shea, C. H., & Wright, D. L. (1995). Contextual dependencies: influence on response latency. Memory, 3(1), 81–95.CrossRefPubMed Shea, C. H., & Wright, D. L. (1995). Contextual dependencies: influence on response latency. Memory, 3(1), 81–95.CrossRefPubMed
go back to reference Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology-Learning Memory and Cognition, 28(3), 445–457.CrossRef Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology-Learning Memory and Cognition, 28(3), 445–457.CrossRef
go back to reference Simon, J. R. (1969). Reactions toward source of stimulation. Journal of Experimental Psychology, 81(1), 174–176.CrossRefPubMed Simon, J. R. (1969). Reactions toward source of stimulation. Journal of Experimental Psychology, 81(1), 174–176.CrossRefPubMed
go back to reference Song, S., Howard, J. H., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189(2), 145–158.CrossRefPubMedCentralPubMed Song, S., Howard, J. H., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189(2), 145–158.CrossRefPubMedCentralPubMed
go back to reference Werheid, K., Ziessler, M., Nattkemper, D., & Yves von Cramon, D. (2003). Sequence learning in Parkinson’s disease: the effect of spatial stimulus–response compatibility. Brain and Cognition, 52(2), 239–249.CrossRefPubMed Werheid, K., Ziessler, M., Nattkemper, D., & Yves von Cramon, D. (2003). Sequence learning in Parkinson’s disease: the effect of spatial stimulus–response compatibility. Brain and Cognition, 52(2), 239–249.CrossRefPubMed
go back to reference Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory and Cognition, 27(3), 561–572.CrossRefPubMed Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory and Cognition, 27(3), 561–572.CrossRefPubMed
go back to reference Willingham, D. B., Greeley, T., & Bardone, A. M. (1993). Dissociation in a serial response time task using a recognition measure: comment on Perruchet and Amorim (1992). Journal of Experimental Psychology. Learning, Memory, and Cognition, 19(6), 1424–1430.CrossRef Willingham, D. B., Greeley, T., & Bardone, A. M. (1993). Dissociation in a serial response time task using a recognition measure: comment on Perruchet and Amorim (1992). Journal of Experimental Psychology. Learning, Memory, and Cognition, 19(6), 1424–1430.CrossRef
go back to reference Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory and Cognition, 28(3), 366–375.CrossRefPubMed Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory and Cognition, 28(3), 366–375.CrossRefPubMed
go back to reference Wright, D. L., & Shea, C. H. (1991). Contextual dependencies in motor skills. Memory and Cognition, 19(4), 361–370.CrossRefPubMed Wright, D. L., & Shea, C. H. (1991). Contextual dependencies in motor skills. Memory and Cognition, 19(4), 361–370.CrossRefPubMed
Metagegevens
Titel
Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?
Auteurs
Daniel J. Sanchez
Eric N. Yarnik
Paul J. Reber
Publicatiedatum
01-03-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2015
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-014-0561-9

Andere artikelen Uitgave 2/2015

Psychological Research 2/2015 Naar de uitgave