Skip to main content

Isotope Dilution Gas Chromatography-Mass Spectrometric Analysis of Tyrosine Oxidation Products in Proteins and Tissues

  • Protocol
Methods in Biological Oxidative Stress

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 693 Accesses

Abstract

Oxidative reactions that modify proteins have been implicated in the pathogenesis of aging and disease (1). It has been difficult to identify the physiologically relevant pathways, however, because the reactive intermediates are short-lived. We attempt to determine which oxidative pathways damage proteins in vivo by first identifying stable end products of potential pathways through in vitro experiments. We then analyze normal and diseased tissues for those compounds. For example, two stable isomers of p-tyrosine—ortho-tyrosine and meta-tyrosine—appear after hydroxyl radical modifies protein-bound phenylalanine residues (24). In contrast, o,o′-dityrosine forms when hydroxyl radical crosslinks tyrosine residues. o,o′-Dityrosine also appears when free or protein-bound tyrosine is attacked by tyrosyl radical (5), which is produced from tyrosine and H2O2 by the heme enzyme myeloperoxidase (6,7). Tyrosyl radical does not generate ortho-tyrosine and meta-tyrosine, however (25). Another oxidant, hypochlorous acid (HOCl), produces 3-chlorotyrosine when it reacts with tyrosine (8,9). HOCl is generated only by myeloperoxidase, which requires H2O2 and Cl to perform the reaction. Thus, determining relative levels of ortho-tyrosine, meta-tyrosine, o,o′-dityrosine, and 3-chlorotyrosine can indicate which pathway might have inflicted protein damage in vivo in a particular tissue. These amino acid products are useful markers because they are stable to acid hydrolysis, an essential analytical step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shigenaga, M. K., Hagen, T. M., and Ames B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91, 10,771–10,778.

    Article  PubMed  CAS  Google Scholar 

  2. Pennathur, S., Wagner, J. D., Leeuwenburgh, C., Litwak, K. N., and Heinecke, J. W. (2001) A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 107, 853–860.

    Article  PubMed  CAS  Google Scholar 

  3. Leeuwenburgh, C., Rasmussen, J. E., Hsu, F. F., Mueller, D. M., Pennathur, S., and Heinecke, J. W. (1997) Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J. Biol. Chem. 272, 3520–3526.

    Article  PubMed  CAS  Google Scholar 

  4. Pennathur, S., Jackson-Lewis, V., Przedborski, S., and Heinecke, J. W. (1999) Mass spectrometric quantification of 3-nitrotyrosine, orthortho-tyrosine, and o,o′-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson’s disease. J. Biol. Chem. 274, 34,621–34,628.

    Article  PubMed  CAS  Google Scholar 

  5. Heinecke, J. W., Li, W., Francis, G. A., and Goldstein, J. A. (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J. Clin. Invest. 91, 2866–2872.

    Article  PubMed  CAS  Google Scholar 

  6. Heinecke, J. W., Li, W., Daehnke, H. L. 3rd, and Goldstein, J. A. (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myelo-peroxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 268, 4069–4077.

    PubMed  CAS  Google Scholar 

  7. Jacob, J. S., Cistola, D. P., Hsu, F. F., Muzaffar, S., Mueller, D. M., Hazen, S. L., and Heinecke, J. W. (1996) Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J. Biol. Chem. 271, 19,950–19,956.

    Article  PubMed  CAS  Google Scholar 

  8. Hazen, S. L., Hsu, F. F., Mueller, D. M., Crowley, J. R., and Heinecke, J. W. (1996) Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J. Clin. Invest. 98, 1283–1289.

    Article  PubMed  CAS  Google Scholar 

  9. Hazen, S. L. and Heinecke, J. W. (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is arkedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest. 99, 2075–2081.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.,Totowa, NJ

About this protocol

Cite this protocol

Heinecke, J.W. (2003). Isotope Dilution Gas Chromatography-Mass Spectrometric Analysis of Tyrosine Oxidation Products in Proteins and Tissues. In: Hensley, K., Floyd, R.A. (eds) Methods in Biological Oxidative Stress. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-424-7:93

Download citation

  • DOI: https://doi.org/10.1385/1-59259-424-7:93

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-815-8

  • Online ISBN: 978-1-59259-424-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics