Skip to main content

Models for Gain-of-Function and Loss-of-Function of MMPs

Transgenic and Gene Targeted Mice

  • Protocol
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 151))

Abstract

The most powerful approach for studying gene function in an intact animal is to regulate the levels of the gene product and thereby see gains-of-function or losses-of-function. The occasional mutation in the genes for the matrix metalloproteinases or their inhibitors, or polymorphism in their promoters that alter transcriptional regulation has been identified in humans and has helped define the function of these proteins. With ever increasing sophistication in producing targeted mutations in mice, there are now available null mutation in most of the known genes for the matrix metalloproteinases and their inhibitors. A number of mouse strains with ectopic expression of normal and mutant proteins have also been made. These transgenic mice are giving us new insights into the processes of development and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vu T. H., Shipley J. M., Bergers G., Berger J. E., Helms J. A., Hanahan D., Shapiro S. D., Senior R. M., and Werb Z. (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422.

    Article  PubMed  CAS  Google Scholar 

  2. Lelongt B., Trugnan G., Murphy G., and Ronco P. M. (1997) Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J. Cell. Biol. 136, 13,663–13,673.

    Article  Google Scholar 

  3. Minor J. H., Betsuyaku T., Shipley J. M., and Senior R. M. (1997) Renal function is normal in gelatinase B deficient mice. Mol. Biol. Cell 8, 403a.

    Google Scholar 

  4. Mohan R., Rinehart W. B., Bargagna-Mohan P., and Finis M. E. (1998) Gelatinase B/lacZ transgenic mice, a model for mapping gelatinase B expression during developmental and injury-related tissue remodeling. J. Biol. Chem. 273, 25,903–25,914.

    Article  PubMed  CAS  Google Scholar 

  5. Balbin M., Fueyo A., Knauper V., Pendas A. M., Lopez J. M., Jimenez M. G., Murphy G., and López-Otín C. (1998) Collagenase 2 (MMP-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus. J. Biol. Chem. 273, 23,959–23,968.

    Article  PubMed  CAS  Google Scholar 

  6. Liu X., Wu H., Byrne M., Jeffrey J., Krane S., and Jaenisch R. (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J. Cell. Biol. 130, 227–237.

    Article  PubMed  CAS  Google Scholar 

  7. Lund L. R., J. Romer J., Thomasset N., Solberg H., Pyke C., Bissell M. J., Dano K., and Werb Z. (1996) Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122, 181–193.

    PubMed  CAS  Google Scholar 

  8. Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., Bissell M. J., and Werb Z. (1994) Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125, 681–693. [Published correction appears in J. Cell Biol. 132,753(1996)].

    Article  PubMed  CAS  Google Scholar 

  9. Alexander C. M., Howard E. W., Bissell M. J., and Werb Z. (1996). Rescue of mammary epithelial cell apoptosis and entactin degradation by a TIMP-1 transGene J. Cell Biol. 135, 1669–1677.

    Article  PubMed  CAS  Google Scholar 

  10. Thomasset N., Lochter A., Sympson C. J., Lund L. R., Williams D. R., Behrendtsen O., Werb Z., and Bissell M. J. (1998) Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early Development. Am. J. Path. 153, 457–467.

    Article  PubMed  CAS  Google Scholar 

  11. Juvy

    Google Scholar 

  12. Pilcher B. K., Dumin J. A., Sudbeck B. D., Krane S. M., Welgus H. G., and Parks W. C. (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J. Cell. Biol. 137, 1445–1457.

    Article  PubMed  CAS  Google Scholar 

  13. Dunsmore S. E., Saarialh-Kere U. K., Roby J. D., Wilson C. L., Matrisian L. M., Welgus H. G., and Parks W. C. (1998) Matrilysin expression and function in airway epithelium. J. Clin. Invest. 102, 1321–1331.

    Article  PubMed  CAS  Google Scholar 

  14. Libby P. (1995) Molecular bases of the acute coronary syndromes. Circulation 91, 2844–2850.

    PubMed  CAS  Google Scholar 

  15. Thompson R. W., Mertens R. A., Liao S., Holmes D. R., Mecham R. P., Welgus H. G., and Parks W. C. (1995) Production and localization of 92-kD gelatinase in abdominal aortic aneurysms: an elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J. Clin. Invest. 96, 318–326.

    Article  PubMed  CAS  Google Scholar 

  16. Breslow J. (1996) Mouse models of atherosclerosis. Science 272, 685–688.

    Article  PubMed  CAS  Google Scholar 

  17. Carmeleit P., Moons L., Lijnen R., Crawley J., Tipping P., Drew A., Eeckhout Y., Shapiro S. D., Lupu F., and Collen D. (1997) Plasmin predisposes to atherosclerotic aneurysm formation by activation of matrix metalloproteinases. Nature Genetics 17, 439–444.

    Article  Google Scholar 

  18. Shipley J. M., Wesselschmidt R. L., Kobayashi D. K., Ley T. J., and Shapiro S. D. (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc. Natl. Acad. Sci. 93, 3942–3946.

    Article  PubMed  CAS  Google Scholar 

  19. Ye S., Eriksson P., Hamsten A., Kurkinen M., Humphries S. E., and Henney A. M. (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem. 271, 13,055–13,060.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson C. L. and Matrisian L. M. (1996) Matrilysin: An epithelial matrix metalloproteinase with potentially novel functions. Int. J. Biochem. Cell. Biol. 28, 123–136.

    Article  PubMed  CAS  Google Scholar 

  21. Saarialho-Kere U. K., Crouch E. C., and Parks W. C. (1995) Matrix metalloproteinase matrilysin is constitutively expressed in adult human exocrine epithelium. J. Invest. Dermatol. 105, 190–196.

    Article  PubMed  CAS  Google Scholar 

  22. Wilson C. L., Heppner K. J., Rudolph L. A., and Matrisian L. M. (1995) The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol. Biol. Cell 6, 851–869.

    PubMed  CAS  Google Scholar 

  23. Witty J. P., McDonnell S., Newell K. J., Cannon P., Navre M., Tressler R. J., and Matrisian L. M. (1994) Modulation of matrilysin levels in colon carcinoma cell lines affects tumorgenicity in vivo. Cancer Res. 54, 4805–4812.

    PubMed  CAS  Google Scholar 

  24. Wilson C. L., Heppner K. J., Labosky P. A., Hogan B. L., and Matrisian L. M. (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Nat. Acad. Sci. 94, 1402–1407.

    Article  PubMed  CAS  Google Scholar 

  25. Rudolph-Owen L. A. and Matrisian L. (1998) Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J. Mammary Gland Neoplasia 3, 177–189.

    Article  CAS  Google Scholar 

  26. Rudolph-Owen L. A., Cannon P., and Matrisian L. (1998) Overexpression of the matrix metalloproteinase matrilysin results in premature mammary gland differentiation and male infertility. Mol. Biol. Cell. 9, 421–435.

    PubMed  CAS  Google Scholar 

  27. Lawson N. D., Khana-Gupta A., and Berliner N. (1998) Isolation and characterization of the cDNA for mouse neutrophil collagenase: Demonstration of shared negative regulatory pathways for neutrophil secondary granule protein gene expression. Blood 91, 2517–2524.

    PubMed  CAS  Google Scholar 

  28. Coussens L. M. and Werb Z. (1996) Matrix metalloproteinases and the development of cancer. Chem. and Biol. 3, 895–904.

    Article  CAS  Google Scholar 

  29. Murray G. I., Duncan M. E., O’Neil P., Melvin W. T., and Fothergill J. E. (1996) Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nature Med. 2, 461–461.

    Article  PubMed  CAS  Google Scholar 

  30. D’Armiento J., DiColandrea T., Dalal S. S., Okada Y., Huang M. T., Conney A. H., and Chada K. (1995) Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol. Cell. Biol. 15, 5732–5739.

    PubMed  Google Scholar 

  31. Coussens L. M., Raymond W. W., Bergers G., et al. (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epthelial carcinogenesis. Genes Dev. 13, 1382–1397

    Article  PubMed  CAS  Google Scholar 

  32. Alexander C. M., Hansell E. J., Behrendtsen O., Flannery M. L., Kishnani N. S., Hawkes S. P., and Werb Z. (1996) Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122, 1723–1736.

    PubMed  CAS  Google Scholar 

  33. Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., and Bissell M. J. (1994) Targeted expression of stromelysin-1 in mammary gland provides for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell. Biol. 125, 681–693.

    Article  PubMed  CAS  Google Scholar 

  34. Lochter A., Srebrow A., Sympson C. J., Terracio N., Werb Z., and Bissell M. J. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J. Biol. Chem. 272, 5007–5015.

    Article  PubMed  CAS  Google Scholar 

  35. Sternlicht M. D., Lochter A., Bissell M. J., and Werb Z. (1997) Ectopic expression of an autoactivating form of stromelysin-1 promotes mammary tumor formation in transgenic mice and in mice injected with mammary epi-thelial cells containing an induciible transgene. Breast Cancer Res. Treat. 46, 28.

    Google Scholar 

  36. Sympson C. J., Talhouk R. S., Bissell M. J., and Werb Z. (1995) The role of metalloproteinases and their inhibitors in regulating mammary epithelial morphology and function in vivo. Persp. Drug Discovery Design 2, 401–411.

    Article  CAS  Google Scholar 

  37. Lochter A., Srebrow A., Sympson C. J. Terracio N., Werb Z., and Bissell M.J. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J. Biol. Chem. 272, 5007–5015.

    Article  PubMed  CAS  Google Scholar 

  38. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., and Chambon P. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704.

    Article  PubMed  CAS  Google Scholar 

  39. Ahmad A., Hanby A., Dublin E., Poulsom R., Smith P., Barnes D., Rubens R., Anglard P., and Hart I. (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am. J. Path. 152, 721–728.

    PubMed  CAS  Google Scholar 

  40. Masson R., Lefebvre O., Noel A., El Fahime M., Chenared M.-P., Wendling C., Kebers F., LeMeur M., Dierich A., Foidart J-M., Basset P.,and Rio M.-C. (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell. Biol. 140, 1535–1541.

    Article  PubMed  CAS  Google Scholar 

  41. Brooks P. C., Stromblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., Quigley J. P., and Cheresh D. A. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin aVb3. Cell 85, 683–693.

    Article  PubMed  CAS  Google Scholar 

  42. Brooks P. C., Silletti S., von Schalscha T. L., Friedlander M., and Cheresh D. A. (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400.

    Article  PubMed  CAS  Google Scholar 

  43. Itoh T., Tanioka M., Yoshida H., Yoshioka T., Nishimoto H., and Itohara S.(1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051.

    PubMed  CAS  Google Scholar 

  44. Liu Z., Shipley J. M., Vu T. H., Zhou X., Diaz L. A., Werb Z., and Senior R. M. (1998) Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J. Exp. Med. 188, 475–482.

    Article  PubMed  CAS  Google Scholar 

  45. O’Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses,M., Lane W. S., Cao Y., Sage E. H., and Folkman J. (1994) A novel angiogenesis inhibitor which mediates the suppression of metastasis by a Lewis Lung carcinoma. Cell 79, 315–328.

    Article  PubMed  Google Scholar 

  46. Dong Z., Kumar R., Yang X., and Fidler I. J. (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.

    Article  PubMed  CAS  Google Scholar 

  47. Patterson B. C. and Sang Q. A. (1997) Angiostatin-converting enzyme activities of human matrilyisin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28,823–28,825.

    Article  PubMed  CAS  Google Scholar 

  48. Cao Y., Chen A., An S. A., Ji R. W., Davidson D., and Llinas M. (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol.Chem. 272, 22,924–22,928.

    Article  PubMed  CAS  Google Scholar 

  49. Stathakis P., Fitzgerald M., Matthias L. J., Chesterman C. N., and Hogg P. J. (1997) Generation of angiostatin by reduction and proteolysis of plasmin: catalysis by a plasmin reductase secreted by cultured cells. J. Biol. Chem. 272, 20,641–20,645.

    Article  PubMed  CAS  Google Scholar 

  50. Gately S., Twardowski S. P., Stack M. S., Patrick M., Boggio L., Cundiff D.L., Schnaper H. W., Madison L., Volpert O., Bouck N., Enghild J., Kwaan H. C., and Soff G. (1996) Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesisis inhibitor, angiostatin. Cancer Res. 56, 4887–4890.

    PubMed  CAS  Google Scholar 

  51. O’Reilly M., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., Flynn E., Birkhead J. R., Olsen B. R., and Folkman J. (1997) Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell. 88, 277–285.

    Article  PubMed  Google Scholar 

  52. Boehm T., Folkman J., Browder T., and O’Reilly M. S. (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407.

    Article  PubMed  CAS  Google Scholar 

  53. Brown P. D. (1997) Matrix metalloproteinase inhibitors in the treatment of cancer. Med. Oncol. 14, 1–10.

    Article  PubMed  CAS  Google Scholar 

  54. Anderson I. C., Shipp M. A., Docherty A. P., and Teicher B.A. (1996) Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res. 56, 710–715.

    Google Scholar 

  55. Werb Z. (1997) ECM and cell surface proteolysis: Regulating cellular ecology.Cell 91, 439–442.

    Article  PubMed  CAS  Google Scholar 

  56. Wernert N. (1997) The multiple roles of tumor stroma. Virchows Arch. 430, 433–443.

    Article  PubMed  CAS  Google Scholar 

  57. Lukashev M. E. and Werb Z. (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends in Cell Biol. 8, 437–441.

    Article  CAS  Google Scholar 

  58. D’Armiento J., Dalal S. S., Okada Y., Berg R. A., and Chada K. (1992) Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 71, 955–961.

    Article  PubMed  Google Scholar 

  59. Hautamaki R. D., Kobayashi D. K., Senior R. M., and Shapiro S. D. (1997) Macrophage elastase is required for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004.

    Article  PubMed  CAS  Google Scholar 

  60. Senior R. M., Griffin G. L., and Mecham R. P. (1980) Chemotactic activity of elastin-derived peptides. J. Clin. Invest. 66, 859–862.

    Article  PubMed  CAS  Google Scholar 

  61. Hunninghake G. W., Davidson J. M., Rennard S., Szapiel S., Gadek J. E., and Crystal R. G. (1981) Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 212, 925–927.

    Article  PubMed  CAS  Google Scholar 

  62. Wang M., Qin X., Mudgett J. S., Ferguson T. A., Senior R. M., and Welgus H. G. (1998) Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response (Submitted for publication).

    Google Scholar 

  63. Flenniken A. M. and Williams B. R. (1990) Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. GenesDev. 4, 1094-106.

    Google Scholar 

  64. Kawabe T. T., Rea T. J., Flenniken A. M., Williams B. R., Groppi V. E., and Buhl A. E. (1991) Localization of TIMP in cycling mouse hair. Development 111, 877–879.

    PubMed  CAS  Google Scholar 

  65. Flenniken A. M., Campbell C. E., and Williams B. R. (1992) Regulation of TIMP gene expression in cell culture and during mouse embryogenesis. Matrix Suppl. 1, 275–280.

    PubMed  CAS  Google Scholar 

  66. Nomura S., Hogan B. L., Wills A. J., Heath J. K., and Edwards D. R., (1989) Developmental expression of tissue inhibitor of metalloproteinase (TIMP) RNA. Development 105, 575–583.

    PubMed  CAS  Google Scholar 

  67. Zeng, Y., Rosborough R. C., Li, Y., Gupta A. R., and Bennett J. (1998) Temporal and spatial regulation of gene expression mediated by the promoter for the human tissue inhibitor of metalloproteinases-3 (TIMP-3)-encoding Gene. Dev.Dyn. 211, 228–237.

    Article  PubMed  CAS  Google Scholar 

  68. Alexander C. M., Hansell E. J., Behrendtsen O., Flannery M. L., Kishnani N. S., Hawkes S. P., and Werb Z. (1996) Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122, 1723-36.

    Google Scholar 

  69. Apte S. S., Hayashi K. Seldin M. F., Mattei M. G., Hayashi M., and Olsen B. R.(1994) Gene Encoding a Novel Murine Tissue Inhibitor Of Metalloproteinases (Timp), Timp-3, Is Expressed In Developing Mouse Epithelia, Cartilage, and Muscle, and Is Located On Mouse Chromosome 10. Dev. Dynamics 200, 177–197.

    CAS  Google Scholar 

  70. Hurskainen T., Hoyhtya M., Tuuttila A., Oikarinen A., and Autio-Har-mainen H. (1996) mRNA expressions of TIMP-1,-2, and-3 and 92-KD type IV collagenase in early human placenta and decidual membrane as studied by in situ hybridization. J. Histochem. CytoChem. 44, 1379–1388.

    PubMed  CAS  Google Scholar 

  71. Leco K. J., Khokha R., Pavloff N., Hawkes S. P., and Edwards D. R. (1994) Tissue Inhibitor Of Metalloproteinases-3 (Timp-3) Is an Extracellular Matrix-Associated Protein With a Distinctive Pattern Of Expression In Mouse Cells and Tissues. J. Biol. Chem. 269, 9352–9360.

    PubMed  CAS  Google Scholar 

  72. Silbiger S. M., Jacobsen V. L., Cupples R. L., and Koski R. A. (1994) Cloning Of Cdnas Encoding Human Timp-3, a Novel Member Of the Tissue Inhibitor Of Metalloproteinase Family. Gene 141, 293–297.

    Article  PubMed  CAS  Google Scholar 

  73. Wu I. and Moses M. A. (1996) Cloning and expression of the cDNA encoding rat tissue inhibitor of metalloproteinase 3 (TIMP-3). Gene 168, 243–246.

    Article  PubMed  CAS  Google Scholar 

  74. Zinyk D. L., Mercer E. H., Harris E., Anderson D. J., and Joyner A. L. (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668.

    Article  PubMed  CAS  Google Scholar 

  75. Brenner C. A., Adler R. R., Rappolee D. A., Pedersen R. A., and Werb Z. (1989) Genes for extracellular-matrix-degrading metalloproteinases and their inhibitor, TIMP, are expressed during early mammalian development. Genes Dev. 3, 848–859.

    Article  PubMed  CAS  Google Scholar 

  76. Werb Z., Ashkenas J., MacAuley A., and Wiesen J. F. (1996) Extracellular matrix remodeling as a regulator of stromal-epithelial interactions during mammary gland development, involution and carcinogenesis. Braz. J. Med. Biol. Res. 29, 1087–109

    PubMed  CAS  Google Scholar 

  77. Alexander C. M., Howard E. W., Bissell M. J., and Werb Z. (1996) Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transGene. J. Cell Biol. 135, 1669–1677.

    Article  PubMed  CAS  Google Scholar 

  78. Boudreau N., Sympson C. J., Werb Z., and Bissell M. J. (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893.

    Article  PubMed  CAS  Google Scholar 

  79. Frisch S. M. and Francis H. (1994) Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis. J. Cell Biol. 124, 619–626.

    Article  PubMed  CAS  Google Scholar 

  80. Cardone M. H., Salvesen G. S., Widmann C., Johnson G., and Frisch S. M. (1997) The Regulation Of Anoikis-Mekk-1 Activation Requires Cleavage By Caspases. Cell 90, 315–323.

    Article  PubMed  CAS  Google Scholar 

  81. Martin D. C., Ruther U., Sanchez-Sweatman O. H., Orr F. W., and Khokha R. (1996) Inhibition of S V40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. OncoGene 13, 569–576.

    PubMed  CAS  Google Scholar 

  82. Ruther U., Woodroofe C. Fattori E., and Ciliberto G. (1993) Inducible formation of liver tumors in transgenic mice. OncoGene 8, 87–93.

    PubMed  CAS  Google Scholar 

  83. Kruger A., Fata J. E., and Khokha R. (1997) Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood 90, 1993–2000.

    PubMed  CAS  Google Scholar 

  84. Kruger A., Sanchez-Sweatman O. H., Martin D. C., Fata J. E., Ho A. T., Orr F. W., Ruther U., and Khokha R. (1998) Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. OncoGene 16, 2419–2423.

    Article  PubMed  CAS  Google Scholar 

  85. Goss K. J., Brown P. D., and Matrisian L. M. (1998) Differing effects of endogenous and synthetic inhibitors of metalloproteinases on intestinal tumorigenesis. Int. J. Cancer 78, 629–635.

    Article  PubMed  CAS  Google Scholar 

  86. Soloway P. D., Alexander C. M., Werb Z., and Jaenisch R. (1996) Targeted mutagenesis of Timp-1 reveals that lung tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. OncoGene 13, 2307–2314.

    PubMed  CAS  Google Scholar 

  87. Mignatti P., Robbins E., and Rifkin D. B. (1986) Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47, 487–498.

    Article  PubMed  CAS  Google Scholar 

  88. Moses M. A. and Langer R. (1991) A metalloproteinase inhibitor as an inhibitor of neovascularization. J. Cell BioChem. 47, 230–235.

    Article  PubMed  CAS  Google Scholar 

  89. Fowlkes J. L., Enghild J. J., Suzuki K., and Nagase H. (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269, 25,742–25,746.

    PubMed  CAS  Google Scholar 

  90. Thrailkill K. M., Quarles L. D., Nagase H., Suzuki K., Serra D. M., and Fowlkes J. L. (1995) Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentia-tion. Endocrinology 136, 3527–3533.

    Article  PubMed  CAS  Google Scholar 

  91. Gasson J. C., Golde D. W., Kaufman S. E., Westbrook C. A., Hewick R. M., Kaufman R. J., Wong G. G., Temple P. A., Leary A. C., and Brown E. L. (1985) Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature 315, 768–771.

    Article  PubMed  CAS  Google Scholar 

  92. Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., and Iwata K. (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. Febs Lett. 298, 29–32.

    Article  PubMed  CAS  Google Scholar 

  93. Stetler-Stevenson W. G., Bersch N., and Golde D. W. (1992) Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. Febs Lett. 296, 231–234.

    Article  PubMed  CAS  Google Scholar 

  94. Matsumoto H., Ishibashi Y., Ohtaki T., Hasegawa Y., Koyama C., and Inoue K. (1993) Newly established murine pituitary folliculo-stellate-like cell line (TtT/GF) secretes potent pituitary glandular cell survival factors, one of which corresponds to metalloproteinase inhibitor. Biochem. Biophys. Res. Comm. 194, 909–915.

    Article  PubMed  CAS  Google Scholar 

  95. Satoh T., Kobayashi K., Yamashita S., Kikuchi M., Sendai Y., and Hoshi H. (1994) Tissue inhibitor of metalloproteinases (TIMP-1) produced by granulosa and oviduct cells enhances in vitro development of bovine embryo. Biol. Repro., 50, 835–844.

    Article  CAS  Google Scholar 

  96. Nemeth J. A. and Goolsby C. L. (1993) TIMP-2 ata growth-stimulatory protein from SV40-transformed human fibroblasts. Exp. Cell Res. 207, 376–382.

    Article  PubMed  CAS  Google Scholar 

  97. Nothnick W. B., Soloway P. D., and Curry T. E. (1998) Pattern of mRNA Timp-1 Gene Biol. Repro. 59, 364–370.

    Article  CAS  Google Scholar 

  98. Murphy A. N., Unsworth E. J., and Stetler-Stevenson W. G. (1993) Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J. Cell Physiol. 157, 351–358.

    Article  PubMed  CAS  Google Scholar 

  99. Boujrad N., Ogwuegbu S. O., Garnier M., Lee C. H., Martin B. M., and Papadopoulos V. (1995) Identification of a stimulator of steroid hormone synthesis isolated from testis. Science 268, 1609–1612.

    Article  PubMed  CAS  Google Scholar 

  100. Nothnick W. B., Soloway P., and Curry T. E. (1997) Assessment of the role of tissue inhibitor of metalloproteinase-1 (Timp-1) during the periovulatory period in female mice lacking a functional Timp-1 Gene. Biol. Repro. 56, 1181–1188.

    Article  CAS  Google Scholar 

  101. Yoon B. J., Osiewicz K., Weaver K., Potter W., Johnston B., Preston M. J., Jaenisch R., Pier G. B., Kubes P., Dougherty T., and Soloway P. D. TIMP-1-regulates innate immune responses to infection (Manuscript submitted).

    Google Scholar 

  102. Osiewicz K., McGarry M., and Soloway P. D. Hyper-resistance to infection in TIMP-1-deficient mice is neutrophil-dependent but not immune cell autonomous. Ann. NYAcad. Sci. (In press).

    Google Scholar 

  103. Okamoto N., Tobe T., Hackett S. F., Ozaki H., Vinores M. A., LaRochelle W.,Zack D. J., and Campochiaro P. A. (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am. J. Pathol. 151, 281–291.

    PubMed  CAS  Google Scholar 

  104. Tobe T., Yamada H., Yamada E., Okamoto N., Zack D. J., Werb Z., Soloway P. D., and Campochiaro P. A. Increase in the Ratio of Tissue Inhibitor of Metalloproteinases-1 to Metalloproteinases Promotes Vascular Endothelial Growth Factor-Induced Neovascularization in the Retina (Manucscript Submitted).

    Google Scholar 

  105. Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., and Goldberg G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338.

    Article  PubMed  CAS  Google Scholar 

  106. Will H., Atkinson S. J., Butler G. S., Smith B., and Murphy G. (1996) The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271, 17,119–17,123.

    Article  PubMed  CAS  Google Scholar 

  107. Wang Z. and Soloway P. D. TIMP-1 and TIMP-2 perform different functions in vivo. Ann. NY Acad. Sci. In press.

    Google Scholar 

  108. Holmbeck K., Bianco P., Caterina J., et al. (1999) MT1-MMP-deficient mice develop dwarfism, oseopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Coussens, L.M., Shapiro, S.D., Soloway, P.D., Werb, Z. (2001). Models for Gain-of-Function and Loss-of-Function of MMPs. In: Clark, I.M. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology™, vol 151. Humana Press. https://doi.org/10.1385/1-59259-046-2:149

Download citation

  • DOI: https://doi.org/10.1385/1-59259-046-2:149

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-733-5

  • Online ISBN: 978-1-59259-046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics