Skip to main content

Structural Studies on MMPs andTIMPs Wolfram Bode and Klaus Maskos

  • Protocol
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 151))

Abstract

The proteolytic activity of the matrix metalloproteinases (MMPs) involved in extracellular matrix degradation must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis and tumor growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional structures became available showing the domain organization, the polypeptide fold and the main specificity determinants of the MMPs. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure based design and improvement of high-affinity ligands, which might be elaborated into drugs. Very recently, structural information also became available for some TIMP structures and MMP-TIMP complexes, which allowed to derive the structural features governing the enzyme-inhibitor interaction. A multitude of reviews surveying work done on all aspects of MMPs and TIMPs appeared within recent years, but none of them concentrating on the three-dimensional structures. This review is considered to close this gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woessner J. F., Jr. (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5, 2145–2155.

    PubMed  CAS  Google Scholar 

  2. Nagase H., Das S. K., Dey S. K., Fowlkes J. L., Huang W., and Brew K. (1997) in Inhibitors of metalloproteinases in development and disease (Hawkes S. P., Edwards D. R., and Khokha R., eds.) Harwood Academic Publ., Lausanne, Switzerland.

    Google Scholar 

  3. Johnson L. L., Dyer R., and Hupe D. J. (1998) Matrix metalloproteinases. Curr. Opin. Chem. Biol. 52, 466–471.

    Google Scholar 

  4. Yong V. W., Krekoski C. A., Forsyth P. A., Bell R., and Edwards D. R. (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21, 75–80.

    PubMed  CAS  Google Scholar 

  5. Coussens L. M., Werb Z. (1996) Matrix metalloproteinases and the development of cancer. Chem. Biol. 53, 895–904.

    Google Scholar 

  6. Chambers A. F. and Matrisian L. M. (1997) Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260–1270.

    PubMed  CAS  Google Scholar 

  7. Beckett R. and Whittaker M. (1998) Matrix metalloproteinase inhibitors. Exp. Opin. Ther. Patents 8, 259–282.

    CAS  Google Scholar 

  8. Bottomley K. M., Johnson W. H., and Walter D. S. (1998) Matrix metalloproteinase inhibitors in arthritis. J. Enz. Inhib. 13, 79–101.

    CAS  Google Scholar 

  9. Massova I., Kotra L. P, Fridman R., and Mobashery S. (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 12, 1075–1095.

    PubMed  CAS  Google Scholar 

  10. Rawlings N. D. and Barrett A. J. (1995) Evolutionary families of metallopeptidases. Meth. Enzymol. 248, 183–229.

    PubMed  CAS  Google Scholar 

  11. Sang Q. A. and Douglas D. A. (1996) Computational sequence analysis of matrix metalloproteinases. J. Prot. Chem. 15, 137–160.

    CAS  Google Scholar 

  12. Murphy G. J., Murphy G., and Reynolds J. J. (1991) The origin of matrix metalloproteinases and their familial relationships. FEBS lett. 289, 4–7.

    PubMed  CAS  Google Scholar 

  13. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., and Seiki M. (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370, 61–65.

    PubMed  CAS  Google Scholar 

  14. Sato H., Kinoshita T., Takino T., Nakayama K., and Seiki M. (1996) Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett. 393, 101–104.

    PubMed  CAS  Google Scholar 

  15. Pei D. and Weiss S. J. (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem. 271, 9135–9140.

    PubMed  CAS  Google Scholar 

  16. Murphy G. and Knäuper V. (1997) Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol. 15, 511–518.

    PubMed  CAS  Google Scholar 

  17. Docherty A. J. P., Lyons A., Smith B. J., Wright E. M., Stephens P. E., Harris T. J. R., Murphy G., and Reynolds J. J. (1985) Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid potentiating activity. Nature 318, 65–69.

    Google Scholar 

  18. Stetler-Stevenson W. G., Krutzsch H. C., and Liotta L. A. (1989) Tissue inhibitor of metalloproteinase (TIMP-2). J. Biol. Chem. 264, 17,374–17,378.

    PubMed  CAS  Google Scholar 

  19. Apte S. S., Olsen B. R., and Murphy G. (1995) The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J. Biol. Chem. 270, 14,313–14,318.

    PubMed  CAS  Google Scholar 

  20. Greene J., Wang M., Liu Y. E., Raymond L. A., Rosen C., and Shi Y. E. (1996) Molecular cloning and characterisation of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 271, 30,375–30,380.

    PubMed  CAS  Google Scholar 

  21. Fernandez-Catalan C., Bode W., Huber R., Turk D., Calvete J. J., Lichte A., Tschesche., and Maskos K. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. The EMBO J. 17, 5238–5248.

    CAS  Google Scholar 

  22. Douglas D. A., Shi Y. E., and Sang Q. A. (1997) Computational sequence analysis of the tissue inhibitor of metalloproteinase family. J. Prot. Chem. 16, 237–255.

    CAS  Google Scholar 

  23. Gomez D. E., Alonso D. F., Yoshiji H., and Thorgeirsson U. P. (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol. 74, 111–122.

    PubMed  CAS  Google Scholar 

  24. Cawston T. (1998) Matrix metalloproteinases andTIMPs: properties and implications for the rheumatic diseases. Mol. Med. Today 4, 130–137.

    PubMed  CAS  Google Scholar 

  25. Butler G. S., Will H., Atkinson S.J., and Murphy G. (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproeinases. Eur. J. Biochem. 244, 653–657.

    PubMed  CAS  Google Scholar 

  26. Will H., Atkinson S. J., Butler G. S., Smyth B., and Murphy G. (1996) The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autocatalytic activation. J. Biol. Chem. 271, 17,119–17,123.

    PubMed  CAS  Google Scholar 

  27. Zucker S., Drews M., Conner C., Foda H. D., DeClerck Y. A., Langley K. E., Bahou W. F., Docherty A. J. P., and Cao J. (1998) Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J. Biol. Chem. 273, 1216–1222.

    PubMed  CAS  Google Scholar 

  28. Murphy G. and Willenbrock F. (1995) Tissue inhibitors of matrix metallo-endopeptidases. Meth. Enzym. 248, 496–510.

    PubMed  CAS  Google Scholar 

  29. Strongin A. Y., Collier I. E., Bannikov U., Marmer B. L., Grant G. A., and Goldberg G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. J. Biol. Chem. 270, 5331–5338.

    PubMed  CAS  Google Scholar 

  30. Strongin A. Y., Marmer B. L., Grant G. A., and Goldberg G. I. (1993) Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J. Biol. Chem. 268, 14,033–14,039.

    PubMed  CAS  Google Scholar 

  31. Kinoshita T., Sato H., Takino T., Itoh M., Akizawa T., and Seiki M. (1996) Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res. 56, 2535–2538.

    PubMed  CAS  Google Scholar 

  32. Huang W., Meng Q., Suzuki K., Nagase H., and Brew K. (1997) Mutational study of the amino-terminal domain of human tissue inhibitor of metalloproteinases 1 (TIMP-1) locates an inhibitory region for matrix metalloproteinases. J. Biol. Chem. 272, 22,086–22,091.

    PubMed  CAS  Google Scholar 

  33. Murphy G., Houbrechts A., Cockett M. I., Williamson R. A., O′Shea M., and Docherty A. J. P. (1991) The N-terminal domain of human tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30, 8097–8102.

    PubMed  CAS  Google Scholar 

  34. Lovejoy B., Cleasby A., Hassell A. M., Longley K., Luther M. A., Weigl D., McGeehan G., McElroy A. B., Drewry D., Lambert M. H., and Jordan S. R. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.

    PubMed  CAS  Google Scholar 

  35. Borkakoti N., Winkler F. K., Williams D. H., D′Arcy A., Broadhurst M. J., Brown P. A., Johnson W. H., and Murray E. J. (1994) Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nature Struct. Biol. 1, 106–110.

    PubMed  CAS  Google Scholar 

  36. Stams T., Spurlino J. C., Smith D. L., Wahl R. C., Ho T. F., Qoronfleh M. W., Banks T. M., and Rubin B. (1994) Structure of human neutrophil collagenase reveals large S1′ specificity pocket. Nature Struct. Biol. 1, 119–123.

    PubMed  CAS  Google Scholar 

  37. Bode W., Reinemer P., Huber R., Kleine T., Schnierer S., and Tschesche H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.

    PubMed  CAS  Google Scholar 

  38. Reinemer P., Grams F., Huber R., Kleine T., Schnierer S., Pieper M., Tschesche H., and Bode W. (1994) Structural implications for the role of the N-terminus in the’ superactivation’ of collagenases — a crystallographic study. FEBS Lett. 338, 227–233.

    PubMed  CAS  Google Scholar 

  39. Gooley P. R., O′Connell J. F., Marcy A. I., Cuca G. C., Salowe S.P., Bush B. L., Hermes J. D., Esser C. K., Hagmann W. K., Springer J. P., and Johnson B. A. (1994) NMR structure of inhibited catalytic domain of human stromelysin-1. Nature Struct. Biol. 1, 111–118.

    PubMed  CAS  Google Scholar 

  40. Lovejoy B., Hassell A. M., Luther M. A., Weigl D., and Jordan S. R. (1994) Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 33, 8207–8217.

    PubMed  CAS  Google Scholar 

  41. Spurlino J. C., Smallwood A. M., Carlton D. D., Banks T. M., Vavra K. J., Johnson J. S., Cook E. R., Falvo J., Wahl R. C., Pulvino T. A., Wendoloski J. J., and Smith D. L. (1994) 1.56Å structure of mature truncated human fibroblast collagenase. Proteins: Str. Fct. Gen. 19, 98–109.

    CAS  Google Scholar 

  42. Browner M. F., Smith W. W., and Castelhano A. L. (1995) Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry 34, 6602–6610.

    PubMed  CAS  Google Scholar 

  43. Becker J. W., Marcy A.I., Rokosz L. L., Axel M. G., Burbaum J. J., Fitzgerald P. M. D., Cameron P. M., Esser C. K., Hagmann W. K., Hermes J. D., and Springer J. P. (1995) Stromelysin-1: Three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Prot. Sci. 4, 1966–1976.

    CAS  Google Scholar 

  44. Dhanaraj V., Ye Q-Z, Johnson L. L., Hupe D. J., Ortwine D. F., Dunbar J. B., Rubin J. R., Pavlovsky A., Humblet C., and Blundell T. L. (1996) X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4, 375–386.

    PubMed  CAS  Google Scholar 

  45. vanDoren S. R., Kurochkin A. V., Hu W., Ye Q. Z., Johnson L. L., Hupe D. J., and Zuiderweg E. R. (1995) Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor. Protein Sci. 4, 2487–2498.

    PubMed  Google Scholar 

  46. Wetmore D. R. and Hardman K. D. (1996) Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry 35, 6549–6558.

    PubMed  CAS  Google Scholar 

  47. Gomis-Rüth F. X., Maskos K., Betz M., Bergner A., Huber R., Suzuki K., Yoshida N., Nagase H., Brew K., Bourenkov G. P., Bartunik H., and Bode W. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81.

    PubMed  Google Scholar 

  48. Grams F., Reinemer P., Powers J. C., Kleine T., Pieper M., Tschesche H., Huber R., and Bode W. (1995) X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841.

    PubMed  CAS  Google Scholar 

  49. Grams F., Crimmin M., Hinnes L., Huxley P., Pieper M., Tschesche H., and Bode W. (1995) Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 34, 14,012–14,020.

    PubMed  CAS  Google Scholar 

  50. Li J.-Y., Brick P., O′Hare M. C., Skarzynski T., Lloyd L. F., Curry V. A., Clark I. M., Bigg H. F., Hazleman B. L., Cawston T. E., and Blow D. M. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed b-propeller. Structure 3, 541–549.

    PubMed  CAS  Google Scholar 

  51. Libson A., Gittis A., Collier I., Marmer B., Goldberg G., and Lattman E. E. (1995) Crystal structure of the hemopexin-like C-terminal domain of gelatinase A. Nature Struct. Biol. 2, 938–9

    PubMed  CAS  Google Scholar 

  52. Gohlke U., Gomis-Rüth F.-X., Crabbe T., Murphy G., Docherty A. J. P., and Bode W. (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Lett. 378, 126–130.

    PubMed  CAS  Google Scholar 

  53. Gomis-Rüth F. X., Gohlke U., Betz M., Knäuper V., Murphy G, López-Otín C., and Bode W. (1996) The helping hand of collagenase-3 (MMP-13): 2.7Å crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol. 264, 556–566.

    PubMed  Google Scholar 

  54. Bode W. (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3, 527–530.

    PubMed  CAS  Google Scholar 

  55. Lovejoy B., Welch A. R., Carr S., Luong C., Broka C., Hendricks R. T., Campbell J. A., Walker K. A. M., Martin R., Van Wart H., and Browner M. F. (1999) Crystal structures of MMP-1 and-13 reveal the structural basis for selectivity of collagenase inhibitors. Nature Str. Biol. 6, 217–221.

    CAS  Google Scholar 

  56. Botos I., Meyer E., Swanson S. M., Lemaitre V., Eeckhout Y., and Meyer E. F. (1999) Structure of recombinant mouse collagenase-3 (MMP-13). J. Mol. Biol. 292, 837–844.

    PubMed  CAS  Google Scholar 

  57. Morgunova E., Tuuttila A., Bergmann U., Isupov M., Lindquist Y., Schneider G., and Tryggvason K. (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284, 1667–1670.

    PubMed  CAS  Google Scholar 

  58. Dhanaraj V., Williams M. G., Ye Q.-Z., Molina F., Johnson L. L., Ortwine D. F., Pavlovsky A., Rubin J. R., Skeenan R. W., White A. D., Humblet C., Hupe D. J., and Blundell T. L. (1999) X-ray structure of gelatinase A catalytic domain complexed with a hydroxamate inhibitor. Croatia Chem. Acta 72, 575.

    CAS  Google Scholar 

  59. Natchus M. G., Cheng M., Wahl C. T., Pikul S., Almstead N. G., Bradley R. S., Taiwo Y. O., Mieling G. E., Dunaway C. M., Snider C. E., Mciver J. M., Barnetts B. L., McPhail S. J., Anastasio M. V., and De B. (1998) Design and synthesis of conformationally-constrained MMP inhibitors. Bioorg. Med. Chem. LETT. 8, 2077.

    PubMed  CAS  Google Scholar 

  60. Pikul S., McDowDunham K. L., Almstead N. G., De B., Natchus M. G., Anastasio M. V., McPhail S. J., Snider C. E., Taiwo Y. O., Rydel T., Dunaway C. M., Gu F., and Mieling G. E. (1998) Discovery of potent, achiral matrix metalloproteinase inhibitors. J. Med. Chem. 41, 3568.

    PubMed  CAS  Google Scholar 

  61. Chen L., Rydel T. J., Dunaways C. M., Pikul S., Dunham K. M., Gu F., and Barnett B. L. (1998) Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes. J. Mol. Biol. 293, 545.

    Google Scholar 

  62. Matter H., Schwab W., Barbier D., Billen G., Haase B., Neises B., Schudok M., Torwart W., Schreuder H., Brachvogel V., and Loenze P. (1999) Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and X-ray structure analysis. J. Med. Chem. 42, 908.

    Google Scholar 

  63. Pavlovsky A. G., Williams M. G., Ye Q.-Z.m, Ortwinw F., Purchase II C. F., White A. D., Dhanaraj V., Roth B. D. Johnson L. L., Hupe D., Humblet C., and Blundell T. L. (1999) X-ray structure of human stromelysin catalytic domain complexed with non-peptide inhibitors: implication for inhibitor selectivity. Prot. Sci. 8, 1455.

    CAS  Google Scholar 

  64. Finzel B. C., Baldwin E. T., Bryant Jr. G. L., Hess G. F., Wilks J.W., Trepod C. M., Mott J. E., Marshall V. P., Petzold G. L., Poorman R. A., O′Sullivan T. J., Schostarez H. J., and Mitchell M. A. (1998) Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity. Prot. Sci. 7, 2118.

    CAS  Google Scholar 

  65. Williamson R. A., Martorell G., Carr M. D., Murphy G., Docherty A. J., Freedman R. B., and Feeney J. (1994) Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 33, 11,745–11,759.

    PubMed  CAS  Google Scholar 

  66. Williamson R. A., Carr M. D., Frenkiel T. A., Feeney J., and Freedman R. B. (1997) Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 36, 13,882–13,889.

    PubMed  CAS  Google Scholar 

  67. Muskett F. W., Frenkiel T. A., Feeney J., Freedman R. B., Carr M. D., and Williamson R. (1998) High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterization of its interaction site with matrix metalloproteinase-3. J. Biol. Chem. 273, 21,736–21,743.

    PubMed  CAS  Google Scholar 

  68. Tuuttila A., Morgunova E., Bergmann U., Lindquist Y., Maskos K., Fernandez-Catalan C., Bode W., Tryggvason K., and Schneider G. (1998) Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 Å resolution. J. Mol. Biol. 284, 1133–1140.

    PubMed  CAS  Google Scholar 

  69. Wu B., Arumugam S., Gao G., Le G., Semenchenko V., Huang W., Brew K., and VanDoren S.R. (2000) NMR structure of tissue inhibitor of metalloproteinases-1 implicates localized induced fit in recognition of matrix metalloproteinases. J. Mol. Biol. 295, 257–268.

    PubMed  CAS  Google Scholar 

  70. Schechter I. and Berger A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.

    CAS  Google Scholar 

  71. Bode W., Gomis-Rüth F.-X., and Stöcker W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS lett. 331, 134–140.

    PubMed  CAS  Google Scholar 

  72. Stöcker W., Grams F., Baumann U., Reinemer P., Gomis-Rüth F. X., McKay D. B., and Bode W. (1995) The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science 4, 823–840.

    PubMed  Google Scholar 

  73. Pickford A. R., Potts J. R., Bright J. R., Phan I., and Campbell I. D. (1997) Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Structure 5, 359–370.

    PubMed  CAS  Google Scholar 

  74. Knäuper V., Murphy G., and Tschesche H. (1996) Activation of human neutrophil procollagenase by stromelysin 2. Eur. J. Biochem. 235, 187–191.

    PubMed  Google Scholar 

  75. Suzuki K., Enghild J. J., Morodomi T., Salvesen G., and Nagase H. (1990) Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10,261–10,270.

    PubMed  CAS  Google Scholar 

  76. Nagase H. (1997) Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151–160.

    PubMed  CAS  Google Scholar 

  77. Pieper M., Betz M., Budisa N., Gomis-Rüth F.-X., Bode W., and Tschesche H. (1997) Expression, purification, characterization, and X-ray analysis of selenomethionine 215 variant of leukocyte collagenase. J. Prot. Chem. 16, 637–650.

    CAS  Google Scholar 

  78. Netzel-Arnett S., Fields G. B., Birkedal-Hansen H., and van Wart H. E. (1991) Sequence specificities of human fibroblast and neutrophil collagenase. J. Biol. Chem. 266, 6747–6755.

    PubMed  CAS  Google Scholar 

  79. Netzel-Arnett S., Sang Q. X., Moore W. G. I., Navre M., Birkedal-Hansen H., and van Wart H. E. (1993) Comparative sequence specificities of human 72-and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin) Biochemistry 32, 6427–6432.

    PubMed  CAS  Google Scholar 

  80. Niedzwiecki L., Teahan J., Harrison R. K., and Stein R. L. (1992) Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluoremetric assays. Biochemistry 31, 12,618–12,623.

    PubMed  CAS  Google Scholar 

  81. Birkedal-Hansen H., Moore W. G. I., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., and Engler J. A. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4(bd2), 197–250.

    PubMed  CAS  Google Scholar 

  82. Matthews B. W. (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc. Chem. Res. 21, 333–340.

    CAS  Google Scholar 

  83. Crabbe T., Zucker S., Cockett M. I., Willenbrock F., Tickle S., O′Connell J. P., Scothern J. M., Murphy G., and Docherty A. J. P. (1994) Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1. Biochemistry 33, 6684–6690.

    PubMed  CAS  Google Scholar 

  84. Windsor L. J., Bodden M. K., Birkedal-Hansen B., Engler J. A., and Birkedal-Hansen H. (1994) Mutational analysis of residues in and around the active site of human fibroblast-type collagenase. J. Biol. Chem. 269, 26,201–26,207.

    PubMed  CAS  Google Scholar 

  85. Bode W., Gomis-Rüth F. X., Huber R., Zwilling R., and Stöcker W. (1992) Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 358, 164–166.

    PubMed  CAS  Google Scholar 

  86. Grams F., Dive V., Yiotakis A., Yiallouros I., Vassiliou S., Zwilling R., Bode W., and Stöcker W. (1996) Structure of astacin with a transition-state analogue inhibitor. Nature Struct. Biol. 3, 671–675.

    PubMed  CAS  Google Scholar 

  87. Noel A., Santavicca M., Stoll I., L′Hoir C., Staub A., Murphy G., Rio M. C., and Basset P. (1995) Identification of structuural determinants controlling human and mouse stromelysin-3 proteolytic activities. J. Biol. Chem. 270, 22,866–22,872.

    PubMed  CAS  Google Scholar 

  88. Nicholls A., Bharadwaj R., and Honig B. (1993) Grasp-graphical representation and analysis of surface properties. Biophys. J. 64, A166.

    Google Scholar 

  89. van Wart H. E. and Birkedal-Hansen H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 87, 5578–5582.

    PubMed  Google Scholar 

  90. Faber H. R., Groom C. R., Baker H. M., Morgan W. T., Smith A., and Baker E. N. (1995) 1.8 Å crystal structure of the C-terminal domain of rabbit serum haemopexin. Structure 3, 551–559.

    PubMed  CAS  Google Scholar 

  91. Murphy G., Allan J. A., Willenbrock F., Cockett M. I., O′Connell J. P., and Docherty A. J. P. (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267, 9612–9618.

    PubMed  CAS  Google Scholar 

  92. Sanchez-Lopez R., Alexander C. M., Behrendtsen O., Breathnach R., and Werb Z. (1993) Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. Biol. Chem. 268, 7238–7247.

    PubMed  CAS  Google Scholar 

  93. Hirose T., Patterson C., Pourmotabbed T., Mainardi C. L., and Hasty K. A. (1993) Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl. Acad. Sci. USA 90, 2569–2573.

    PubMed  CAS  Google Scholar 

  94. Ohuchi E., Imai K., Fujii Y., Sato H., Seiki M., and Okada Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451.

    PubMed  CAS  Google Scholar 

  95. Knäuper V., Docherty A. J. P., Smith B., Tschesche H., and Murphy G. (1997) Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS lett. 405, 60–64.

    PubMed  Google Scholar 

  96. Evans S. V. (1993) SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138.

    PubMed  CAS  Google Scholar 

  97. Barton G. J. (1993) ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40.

    PubMed  CAS  Google Scholar 

  98. Ottl J., Battistuta R., Pieper M., Tschesche H., Bode W., Kühn K., and Moroder L. (1996) Design and synthesis of heterotrimeric collagen peptides with a built-in cystine knot. FEBS Lett. 398, 31–36.

    PubMed  CAS  Google Scholar 

  99. Baumann U., Bauer M., Letoffe S., Delepelaire P., and Wandersman C. (1995) Crystal Structure of a complex between Serratia marcescens metalloprotease and an inhibitor from Erwinia chrysanthemi. J. Mol. Biol. 248, 653–661.

    PubMed  CAS  Google Scholar 

  100. Cao J., Sato H., Takino T., and Seiki M. (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for progelatinase A activation. J. Biol. Chem. 270, 801–805.

    PubMed  CAS  Google Scholar 

  101. Butler G. S., Butler M. J., Atkinson S. J., Will H., Tamura T., van Westrum S. S., Crabbe T., Clements J., d′Ortho M. P., and Murphy G. (1998) The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. J. Biol. Chem. 273, 871–880.

    PubMed  CAS  Google Scholar 

  102. Brandstetter H., Engh R. A., Graf von Roedern E., Moroder L., Huber R., Bode W., and Grams F. (1998) Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data. Prot. Sci. 7, 1303–1309.

    CAS  Google Scholar 

  103. Moy F. J., Chandra P. K., Cosmi S., Pisano M. R., Urbano C., Wilhelm J., and Powers R. (1998) High-resolution solution structure of the inhibitor free catalytic fragment of human fibroblast collagenase, determined by multidimensional NMR. Biochemistry 37, 1495–1504.

    PubMed  CAS  Google Scholar 

  104. VanDoren S. R., Kurochkin A. V., Hu W., Ye Q.-Z., Johnsson L. L., Hupe D. J., and Zuiderweg E. R. P. (1995) Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor. Prot. Sci. 4, 2487–2498.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Bode, W., Maskos, K. (2001). Structural Studies on MMPs andTIMPs Wolfram Bode and Klaus Maskos. In: Clark, I.M. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology™, vol 151. Humana Press. https://doi.org/10.1385/1-59259-046-2:045

Download citation

  • DOI: https://doi.org/10.1385/1-59259-046-2:045

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-733-5

  • Online ISBN: 978-1-59259-046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics