Skip to main content

Marker Utility for Combination Therapy

  • Protocol
  • First Online:
Molecular Diagnostics for Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1102))

Abstract

Melanoma is a heterogeneous disease for which monotherapies are likely to fail in the majority of patients due to genomic variations between individuals. Novel treatments, such as vemurafenib and ipilimumab, offer clinical promise in metastatic melanoma and the increased potential for combined therapeutic strategies, necessary given the differences in response between patients. Together with these new approaches, the development of clinically relevant biomarkers that predict treatment outcomes are required to ensure these new therapies are targeted at those patients most likely to benefit. Here we review the utility of some potential biomarkers of treatment response in patients with metastatic melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed  CAS  Google Scholar 

  2. Hauschild A, Grob JJ (2012) Demidov LV, et al Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  PubMed  CAS  Google Scholar 

  3. Flaherty KT, Robert C, Hersey P et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114

    Article  PubMed  CAS  Google Scholar 

  4. Ascierto PA, Schadendorf D, Berking C et al (2013) MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol 14:249–256

    Google Scholar 

  5. Carvajal RD, Antonescu CR, Wolchok JD et al (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–2334

    Article  PubMed  CAS  Google Scholar 

  6. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed  CAS  Google Scholar 

  7. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  PubMed  CAS  Google Scholar 

  8. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  PubMed  CAS  Google Scholar 

  9. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  PubMed  CAS  Google Scholar 

  10. Ascierto PA, Streicher HZ, Sznol M (2010) Melanoma: a model for testing new agents in combination therapies. J Transl Med 8:38

    Article  PubMed  Google Scholar 

  11. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Google Scholar 

  12. Ascierto PA, De Maio E, Bertuzzi S et al (2011) Future perspectives in melanoma research. Meeting report from the “Melanoma Research: a bridge Naples-USA. Naples, December 6th-7th, 2010”. J Transl Med 9:32

    Article  PubMed  Google Scholar 

  13. Colombino M, Capone M, Lissia A et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30:2522–2529

    Article  PubMed  Google Scholar 

  14. Wang E, Zhao Y, Monaco A et al (2012) A multi-factorial genetic model for prognostic assessment of high risk melanoma patients receiving adjuvant interferon. PLoS One 7:e40805

    Article  PubMed  CAS  Google Scholar 

  15. Paraiso KH, Xiang Y, Rebecca VW et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–2760

    Article  PubMed  CAS  Google Scholar 

  16. Tap WD, Gong KW, Dering J et al (2010) Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12:637–649

    PubMed  CAS  Google Scholar 

  17. Sondergaard JN, Nazarian R, Wang Q et al (2010) Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med 8:39

    Article  PubMed  Google Scholar 

  18. Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  PubMed  CAS  Google Scholar 

  19. Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  PubMed  CAS  Google Scholar 

  20. Smalley KS, Lioni M, Palma MD et al (2008) Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600Emutated melanomas. Mol Cancer Ther 7:2876–2883

    Article  PubMed  CAS  Google Scholar 

  21. Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–5485

    Article  PubMed  CAS  Google Scholar 

  22. Boisvert-Adamo K, Aplin AE (2008) Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27:3301–3312

    Article  PubMed  CAS  Google Scholar 

  23. Yang JY, Hung MC (2009) A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res 15:752–757

    Article  PubMed  CAS  Google Scholar 

  24. Jakob JA, Bassett RL Jr, Ng CS et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118:4014–4023

    Article  PubMed  CAS  Google Scholar 

  25. Devitt B, Liu W, Salemi R et al (2011) Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res 24:666–672

    Article  PubMed  CAS  Google Scholar 

  26. Ellerhorst JA, Greene VR, Ekmekcioglu S et al (2011) Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res 17:229–235

    Article  PubMed  CAS  Google Scholar 

  27. Ugurel S, Thirumaran RK, Bloethner S et al (2007) B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis [serial online]. PLoS One 2:e236

    Article  PubMed  Google Scholar 

  28. Hatzivassiliou G, Song K, Yen I et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435

    Article  PubMed  CAS  Google Scholar 

  29. Poulikakos PI, Zhang C, Bollag G et al (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  PubMed  CAS  Google Scholar 

  30. Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed  CAS  Google Scholar 

  31. Ascierto PA, Minor D, Ribas A et al (2013) Phase II Trial (BREAK-2) of the BRAF Inhibitor Dabrafenib (GSK2118436) in Patients With Metastatic Melanoma. J Clin Oncol 31:3205–3211

    Google Scholar 

  32. Long GV, Ascierto PA, Grob JJ et al (2012) Tumor-specific circulating cell-free DNA (cfDNA) BRAF mutations (muts) to predict clinical outcome in patients (pts) treated with the BRAF inhibitor dabrafenib (GSK2118436). J Clin Oncol 30(Suppl):8518, abstract

    Google Scholar 

  33. Koya RC, Mok S, Otte N et al (2012) BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res 72:3928–3937

    Article  PubMed  CAS  Google Scholar 

  34. Boni A, Cogdill AP, Dang P et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70:5213–5219

    Google Scholar 

  35. Yang J, Amiri KI, Burke JR et al (2006) BMS-345541 targets inhibitor of kappaB kinase and induces apoptosis in melanoma: involvement of nuclear factor kappaB and mitochondria pathways. Clin Cancer Res 12:950–960

    Article  PubMed  CAS  Google Scholar 

  36. Ascierto PA, Simeone E, Giannarelli D et al (2012) Sequencing of BRAF inhibitors and ipilimumab in patients with metastatic melanoma: a possible algorithm for clinical use. J Transl Med 10:107

    Article  PubMed  CAS  Google Scholar 

  37. Sharma SV, Lee DY, Li B, Quinlan MP et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  PubMed  CAS  Google Scholar 

  38. Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  PubMed  CAS  Google Scholar 

  39. Callahan MK, Wolchok JD, Allison JP (2010) Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 37:473–484

    Article  PubMed  CAS  Google Scholar 

  40. Fu T, He Q, Sharma P (2011) The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res 71:5445–5454

    Article  PubMed  CAS  Google Scholar 

  41. Hamid O, Schmidt H, Nissan A et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204

    Google Scholar 

  42. Simeone E, Gentilcore G, Romano A et al (2012) Immunological and biological changes during ipilimumab (Ipi) treatment and their correlation with clinical response and survival. J Clin Oncol 30(Suppl):8573, abstract

    Google Scholar 

  43. Simeone E, Ascierto PA (2012) Immunomodulating antibodies in the treatment of metastatic melanoma: the experience with anti-CTLA-4, anti-CD137, and anti-PD1. J Immunotoxicol 9:241–247

    Article  PubMed  CAS  Google Scholar 

  44. Hu JC, Coffin RS, Davis CJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12:6737–6747

    Article  PubMed  CAS  Google Scholar 

  45. Eigentler TK, Weide B, de Braud F et al (2011) A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res 17:7732–7742

    Article  PubMed  CAS  Google Scholar 

  46. Telang S, Rasku MA, Clem AL et al (2011) Phase II trial of the regulatory T cell-depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 11:515

    Article  PubMed  CAS  Google Scholar 

  47. Oshita C, Takikawa M, Kume A et al (2012) Dendritic cell-based vaccination in metastatic melanoma patients: phase II clinical trial. Oncol Rep 28:1131–1138. doi:10.3892/or.2012.1956

    PubMed  CAS  Google Scholar 

  48. Fox BA, Schendel DJ, Butterfield LH et al (2011) Defining the critical hurdles in cancer immunotherapy. J Transl Med 9:214

    Article  PubMed  Google Scholar 

  49. Galon J, Pagès F, Marincola FM et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed  Google Scholar 

  50. Allen T, Gundrajakuppam L (2012) A role of immunotherapy in metastatic malignant melanoma. Cent Nerv Syst Agents Med Chem 12:182–188

    Article  PubMed  CAS  Google Scholar 

  51. Peled N, Oton AB, Hirsch FR, Bunn P (2009) MAGE A3 antigen-specific cancer immunotherapeutic. Immunotherapy 1:19–25

    Article  PubMed  CAS  Google Scholar 

  52. Tyagi P, Mirakhur B (2009) MAGRIT: the largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin Lung Cancer 10:371–374

    Article  PubMed  Google Scholar 

  53. Mangsbo SM, Sandin LC, Anger K et al (2010) Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 33:225–235

    Article  PubMed  CAS  Google Scholar 

  54. Di Giacomo AM, Ascierto PA, Pilla L et al (2012) Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol 13:879–886

    Article  PubMed  Google Scholar 

  55. Hersh EM, O’Day SJ, Ribas A et al (2010) A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer 116:155–163

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Simeone, E., Grimaldi, A.M., Ascierto, P.A. (2014). Marker Utility for Combination Therapy. In: Thurin, M., Marincola, F. (eds) Molecular Diagnostics for Melanoma. Methods in Molecular Biology, vol 1102. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-727-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-727-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-726-6

  • Online ISBN: 978-1-62703-727-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics