Skip to main content

Immune Cells Listen to What Stress Is Saying: Neuroendocrine Receptors Orchestrate Immune Function

  • Protocol
  • First Online:
Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 934))

Abstract

Over the past three decades, the field of psychoneuroimmunology research has blossomed into a major field of study, gaining interests of researchers across all traditionally accepted disciplines of scientific research. This chapter provides an overview of our current understanding in defining neuroimmune interactions with a primary focus of discussing the neuroendocrine receptor activity by immune cells. This chapter highlights the necessity of neuroimmune responses as it relates to a better understanding of the pathophysiological mechanisms of health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5:575–581

    Article  PubMed  CAS  Google Scholar 

  2. Dantzer R et al (1998) Cytokines and sickness behavior. Ann N Y Acad Sci 840:586–590

    Article  PubMed  CAS  Google Scholar 

  3. Dantzer R et al (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85:60–65

    Article  PubMed  CAS  Google Scholar 

  4. Watkins LR et al (1995) Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci 57:1101–1126

    Google Scholar 

  5. Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system I. Expression and recognition. Trends Neurosci 18:83–88

    Article  PubMed  CAS  Google Scholar 

  6. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci 94:557–572

    PubMed  CAS  Google Scholar 

  7. Kunicka JE et al (1993) Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol 149:39–49

    Article  PubMed  CAS  Google Scholar 

  8. Elenkov IJ et al (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    PubMed  CAS  Google Scholar 

  9. Nance DM, Sanders VM (2001) Autonomic innervation and regulation of the immune system (1987–2007). Pharmacol Rev 53:487–525

    Google Scholar 

  10. Horin T et al (1995) The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation 2:203–215

    Article  Google Scholar 

  11. Hadden JW et al (1970) Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol 1:583–595

    Article  PubMed  CAS  Google Scholar 

  12. Felten DL, Felten SY (1988) Sympathetic noradrenergic innervation of immune organs. Brain Behav Immun 2:293–300

    Article  PubMed  CAS  Google Scholar 

  13. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    PubMed  CAS  Google Scholar 

  14. Westerloo DJ (2010) The vagal immune reflex: a blessing from above. Wien Med Wochenschr 160:112–117

    Article  PubMed  Google Scholar 

  15. Steinman L et al (2003) The intricate interplay among body weight, stress, and the immune response to friend or foe. J Clin Invest 111:183–185

    PubMed  CAS  Google Scholar 

  16. Wilder RL et al (1982) Strain and sex variation in the susceptibility to streptococcal cell wall-induced polyarthritis in the rat. Arthritis Rheum 25:1064–1072

    Article  PubMed  CAS  Google Scholar 

  17. Rozlog LA et al (1999) Stress and immunity: implications of viral disease and wound healing. J Periodontol 70:786–792

    Article  PubMed  CAS  Google Scholar 

  18. Glaser R, Liecolt-Glaser JK (1998) Stress-associated immune modulation: relevance to viral infections and chronic fatique syndrome. Am J Med 105:35S–42S

    Article  PubMed  CAS  Google Scholar 

  19. Argon A, Stanisz AM (1992) Are lymphocytes a target for substance P modulation in arthritis? Semin Arthritis Rheum 21:252–258

    Article  Google Scholar 

  20. Webster EL et al (1990) Corticotropin-releasing factor receptors in mouse spleen: identification of receptor-bearing cells as resident macrophages. Endocrinology 27:440–452

    Article  Google Scholar 

  21. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system. Pharmacol Rev 53:487–525

    Google Scholar 

  22. Kohm AP, Sanders VM (2008) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Acta Biophys Sin (Shanghai) 40:595–600

    Article  Google Scholar 

  23. Tompson EB (2008) Stepping stones in the path of glucocorticoid-driven apoptosis of lymphoid cells. Steroids 73:1025–1029

    Article  Google Scholar 

  24. Elmquist JK, Scammell TE, Saper CB (1997) Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci 20:565–570

    Article  PubMed  CAS  Google Scholar 

  25. Mulla A, Buckingham JC (1999) Regulation of the hypothalamo-pituitary-adrenal axis by cytokines. Baillieres Best Pract Res Clin Endocrinol Metab 13:503–521

    Article  PubMed  CAS  Google Scholar 

  26. Dharbhar FS, McEwen BS, Spencer RL (1993) Stress response, adrenal steroid receptor levels and corticosteroid-binding globulin levels—a comparison between Spraque-Dawley, Fischer 344 and Lewis rats. Brain Res 616:89–98

    Article  Google Scholar 

  27. Smith CC et al (1994) Differential mineral corticoid (type 1) and glucocorticoid (type 2) receptor expression in Lewis and Fischer rats. Neuroimmunomodulation 1:66–73

    Article  PubMed  CAS  Google Scholar 

  28. McKay L, Cidlowshki JA (1999) Molecular control of immune/inflammatory responses: interactions between nuclear factor-kB and steroid receptor-signaling pathways. Endocr Rev 20:435–459

    Article  PubMed  CAS  Google Scholar 

  29. Van der Burg B et al (1997) Nuclear factor-k B repression in antiinflammation an immunosuppression by glucocorticoids. Trends Endocrinol Metab 8:152–157

    Article  PubMed  Google Scholar 

  30. Brogan IJ et al (1999) Interaction of glucocorticoid receptor isoforms with transcription factors AP-1 and NF-kB: lack of effect of glucocorticoid receptor B. Mol Cell Endocrinol 157:95–104

    Article  PubMed  CAS  Google Scholar 

  31. Pearce D, Yamamoto K (1993) Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259:1161–1165

    Article  PubMed  CAS  Google Scholar 

  32. Plaut M (1987) Lymphocyte hormone receptors. Annu Rev Immunol 5:621–669

    Article  PubMed  CAS  Google Scholar 

  33. Pitzalis C, Piitone N, Perretti M (2002) Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann N Y Acad Sci 966:108–118

    Article  PubMed  CAS  Google Scholar 

  34. Tamada K et al (1998) IL-4-producing NK1.1+ T cells are resistance to glucocorticoid-induced apoptosis: implications for the Th1/Th2 balance. J Immunol 161:1239–1247

    PubMed  CAS  Google Scholar 

  35. Planey S, Litwack G (2000) Glucocorticoid-induced apoptosis in lymphocyte. Biochem Biophys Res Commun 279:307–312

    Article  PubMed  CAS  Google Scholar 

  36. Alamai WY, Melemedjian OK (2002) Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol 71:9–15

    Google Scholar 

  37. Steer JH et al (1998) Altered leucocytes trafficking and suppressed tumour necrosis factor a release from peripheral blood monocytes after intraarticular glucocorticoid treatment. Ann Rheum Dis 57:732–737

    Article  PubMed  CAS  Google Scholar 

  38. Wingett D, Forcier K, Nielson CP (1996) Glucocorticoid mediated inhibition of RANTES expression in human T lymphocytes. FEBS Lett 398:308–311

    Article  PubMed  CAS  Google Scholar 

  39. Barnes PJ (2010) Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol 120:76–85

    Article  PubMed  CAS  Google Scholar 

  40. Liberman AC et al (2007) Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev 18:45–56

    Article  PubMed  CAS  Google Scholar 

  41. Russo-Marie F (1992) Macrophages and the glucocorticoids. J Neuroimmunol 40:281–286

    Article  PubMed  CAS  Google Scholar 

  42. Tait AS, Butts CL, Sternberg EM (2008) The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease. J Leukoc Biol 84:924–931

    Article  PubMed  CAS  Google Scholar 

  43. Schif-Zuck S et al (2011) Saturated-efferocytosis generates proresolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol 41:336–379

    Article  Google Scholar 

  44. Goulding NK et al (1998) Novel pathways for glucocorticoid effects on neutrophils in chronic inflammation. Inflamm Res 47:S158–S165

    Article  PubMed  CAS  Google Scholar 

  45. Strausbaugh HJ, Rosen SD (1998) A potential role for annexin 1 as a physiologic mediator of glucocorticoid-induced L-selectin shedding from myeloid cells. J Immunol 166:294–300

    Google Scholar 

  46. Kontula K et al (1983) Binding of progestins to the glucocorticoid receptor. Correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochem Pharmacol 32:1511–1518

    Article  PubMed  CAS  Google Scholar 

  47. McColl A et al (2007) Effects of glucocorticoids on apoptosis and clearance of apoptotic cells. ScientificWorldJournal 17:1165–1181

    Article  Google Scholar 

  48. Ashwell JD, Lu FWM, Ms V (2000) Glucocorticoids in T cell development and function. Annu Rev Immunol 18:309–345

    Article  PubMed  CAS  Google Scholar 

  49. Zen M et al (2011) The kaleidoscope of glucocorticoid effects on immune system. Autoimmun Rev 10:305–310

    Article  PubMed  CAS  Google Scholar 

  50. Moser M et al (1995) Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol 10:2818–2824

    Article  Google Scholar 

  51. Roca L et al (2007) Dexamethasone modulates interleukin-12 production by inducing monocyte chemoattractant protein-1 in human dendritic cells. Immunol Cell Biol 8:610–616

    Article  Google Scholar 

  52. Vacchio MS, Lee JJ, Ashwell JD (1999) Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. J Immunol 163:1327–1333

    PubMed  CAS  Google Scholar 

  53. Palinkas L et al (2008) Developmental shift in TcR-mediated rescue of thymocytes from glucocorticoid-induced apoptosis. Immuno­biology 213:39–50

    Article  PubMed  CAS  Google Scholar 

  54. Purton JF et al (2004) Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death. J Immunol 173:3816–3824

    PubMed  CAS  Google Scholar 

  55. Takeda T et al (2008) Crosstalk between the interleukin-6 (IL-6)-JAK-STAT and the glucocorticoid-nuclear receptor pathway: synergistic activation of IL-6 response element by IL-6 and glucocorticoid. J Endocrinol 159:323–330

    Article  Google Scholar 

  56. Adcock IM (2001) Glucocorticoid-regulated transcription factors. Pulm Pharmacol Ther 14:211–219

    Article  PubMed  CAS  Google Scholar 

  57. Van Oosten MJ et al (2010) Polymorphisms n the glucocorticoid receptor gene that modulate glucocorticoid sensitivity are associated with rheumatoid arthritis. Arthritis Res Ther 12:R159

    Article  PubMed  Google Scholar 

  58. Vazquez-Tello A et al (2010) Induction of glucocorticoid receptor-beta expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. Clin Exp Allergy 40(9):1312–1322

    Article  PubMed  CAS  Google Scholar 

  59. Belinger DL et al (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2:27–56

    Article  Google Scholar 

  60. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21:736–745

    Article  PubMed  CAS  Google Scholar 

  61. Madden KS, Sanders VM, Felten DL (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35:417–448

    Article  PubMed  CAS  Google Scholar 

  62. Logan RW, Ariona A, Sarkar DK (2011) Role of sympathetic nervous system in the entrainment of circadian natural-killer cell function. Brain Behav Immun 25:101–109

    Article  PubMed  CAS  Google Scholar 

  63. Woods JA (2000) Exercised and neuroendocrine modulation of macrophage function. Int J Sports Med 21:S24–S30

    Article  PubMed  CAS  Google Scholar 

  64. Maestroni GJ (2006) Sympathetic nervous system influence on the innate immune response. Ann N Y Acad Sci 1069:195–207

    Article  PubMed  Google Scholar 

  65. Shahabi S et al (2006) Sympathetic nervous system plays an important role in the relationship between immune mediated diseases. Med Hypotheses 67:900–903

    Article  PubMed  CAS  Google Scholar 

  66. Sanders VM et al (1997) Differential expression of the beta-2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158:4200–4210

    PubMed  CAS  Google Scholar 

  67. Panine-Bordignon P et al (1997) Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest 100:1513–1519

    Article  Google Scholar 

  68. Kim BJ, Jones HP (2010) Epinephrine-primed murine bone marrow-derived dendritic cells facilitate production of IL-17A and IL-4 but not IFN-g by CD4+ T cells. Brain Behav Immun 24:1126–1136

    Article  PubMed  CAS  Google Scholar 

  69. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  PubMed  CAS  Google Scholar 

  70. Sato KZ et al (1999) Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci Lett 266:17–20

    Article  PubMed  CAS  Google Scholar 

  71. Borovikova LV et al (2000) Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 85:141–147

    Article  PubMed  CAS  Google Scholar 

  72. Yoshikawa H et al (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146:116–123

    Article  PubMed  CAS  Google Scholar 

  73. de Jonge WJ, van der Zanden EP (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2- STAT3 signaling pathway. Nat Immunol 6:844–851

    Article  PubMed  Google Scholar 

  74. Vale W et al (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397

    Article  PubMed  CAS  Google Scholar 

  75. Chen R et al (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A 90:8967–8971

    Article  PubMed  CAS  Google Scholar 

  76. Kalantaridou S et al (2007) Peripheral corticotropin-releasing hormone is produced in the immune and reproductive systems: actions, potential roles and clinical implications. Front Biosci 12:572–580

    Article  PubMed  CAS  Google Scholar 

  77. Tache Y, Kiank C, Stengel A (2009) A role for corticotropin-releasing factor in functional gastrointestinal disorders. Curr Gastroenterol Rep 11:270–277

    Article  PubMed  Google Scholar 

  78. Slominski A et al (2001) Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J 15:1678–1693

    Article  PubMed  CAS  Google Scholar 

  79. Gonzales XF et al (2008) Stress-induced differences in primary and secondary resistance against bacterial sepsis corresponds with diverse corticotropin releasing hormone receptor expression by pulmonary CD11c+ MHC II+ and CD11c-MHC II+ APCs. Brain Behav Immun 22:552–564

    Article  PubMed  CAS  Google Scholar 

  80. Cao J et al (2005) Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol 174:7665–7675

    PubMed  CAS  Google Scholar 

  81. Webster EL et al (1990) Corticotropin-releasing factor receptors in mouse spleen: identification of receptor-bearing cells as resident macrophages. Endocrinology 127:440–452

    Article  PubMed  CAS  Google Scholar 

  82. Agelaki S et al (2002) Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun 70:6068–6074

    Article  PubMed  CAS  Google Scholar 

  83. Wallon C, Soderholm JD (2009) Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon. Ann N Y Acad Sci 1165:206–210

    Article  PubMed  CAS  Google Scholar 

  84. Gao L et al (2007) Corticotropin-releasing hormone receptor type 1 and type 2 mediate differential effects on 15-hydroxy prostaglandin dehydrogenase expression in cultured human chorion trophoblasts. Endocrinology 148:3645–3654

    Article  PubMed  CAS  Google Scholar 

  85. Kokkotou E et al (2006) Corticotropin-releasing hormone receptor 2-deficient mice have reduced intestinal inflammatory responses. J Immunol 177:3355–3361

    PubMed  CAS  Google Scholar 

  86. Moffatt JD, Lever R, Page CP (2006) Activation of corticotropin-releasing factor receptor-2 causes bronchorelaxation and inhibits pulmonary inflammation in mice. FASEB J 20:1877–1879

    Article  PubMed  CAS  Google Scholar 

  87. Watkins LR, Maier SF (2005) Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med 257:139–155

    Article  PubMed  CAS  Google Scholar 

  88. Vedhara K et al (1999) Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet 353:627–631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harlan P. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jones, H.P. (2012). Immune Cells Listen to What Stress Is Saying: Neuroendocrine Receptors Orchestrate Immune Function. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 934. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-071-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-071-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-070-0

  • Online ISBN: 978-1-62703-071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics