Skip to main content

Mouse Testing Methods in Psychoneuroimmunology: An Overview of How to Measure Sickness, Depressive/Anxietal, Cognitive, and Physical Activity Behaviors

  • Protocol
  • First Online:
Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 934))

Abstract

The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ader R (2000) On the development of psychoneuroimmunology. Eur J Pharmacol 405(1–3):167–176

    PubMed  CAS  Google Scholar 

  2. Maier SF, Watkins LR, Fleshner M (1994) Psychoneuroimmunology—the interface between behavior, brain and immunity. Am Psychol 49(12):1004–1017

    PubMed  CAS  Google Scholar 

  3. Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132

    PubMed  CAS  Google Scholar 

  4. Kelley KW et al (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17:S112–S118

    PubMed  CAS  Google Scholar 

  5. Irwin MR (2008) Human psychoneuroimmunology: 20 years of discovery. Brain Behav Immun 22:129–139

    PubMed  CAS  Google Scholar 

  6. Dantzer R (2004) Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411

    PubMed  CAS  Google Scholar 

  7. Johnson DR et al (2007) Acute hypoxia activates the neuroimmune system, which diabetes exacerbates. J Neurosci 27(5):1161–1166

    PubMed  CAS  Google Scholar 

  8. Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234

    PubMed  CAS  Google Scholar 

  9. Gibertini M (1998) Cytokines and cognitive behavior. Neuroimmunomodulation 5:160–165

    PubMed  CAS  Google Scholar 

  10. Wingfield JC et al (2006) Contexts and ethology of vertebrate aggression: implications for the evolution of hormone-behavior interactions. In: Nelson RJ (ed) Biology of aggression. Oxford University Press, New York

    Google Scholar 

  11. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    PubMed  CAS  Google Scholar 

  12. Lavin DN et al (2011) Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents. Obesity 19(8):1586–1594

    PubMed  CAS  Google Scholar 

  13. Paul RH et al (2000) Fatigue and its impact on patients with Myasthenia Gravis. Muscle Nerve 23(9):1402–1406

    PubMed  CAS  Google Scholar 

  14. Carmichael MD et al (2006) Role of brain IL-1β on fatigue after exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol 291:R1344–R1348

    PubMed  CAS  Google Scholar 

  15. Rönnbäck L, Hansson E (2004) On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 1:22

    PubMed  Google Scholar 

  16. Warren EJ et al (1997) Coincidental changes in behavior and plasma cortisol in unrestrained pigs after intracerebroventricular injection of tumor necrosis factor-α. Endocrinology 138(6):2365–2371

    PubMed  CAS  Google Scholar 

  17. Grippo AJ (2009) Mechanisms underlying altered mood and cardiovascular dysfunction: the value of neurobiological and behavioral research in animal models. Neurosci Biobehav Rev 33(2):171–180

    PubMed  CAS  Google Scholar 

  18. Crawley JN (2003) Behavioral phenotyping of rodents. Comp Med 53(2):140–146

    PubMed  CAS  Google Scholar 

  19. Shigemura N et al (2004) Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 145(2):839–847

    PubMed  CAS  Google Scholar 

  20. Rodgers RJ, Cole JC (1993) Influence of social isolation, gender, strain and prior novelty on plus-maze behaviour in mice. Physiol Behav 54(4):729–736

    PubMed  CAS  Google Scholar 

  21. Palanza P, Gioiosa L, Parmigiani S (2001) Social stress in mice: gender differences and effects of estrous cycle and social dominance. Physiol Behav 73:411–420

    PubMed  CAS  Google Scholar 

  22. Lightfoot JT et al (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19:270–276

    PubMed  CAS  Google Scholar 

  23. Basterfield L, Lumley LK, Mathers JC (2009) Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. Int J Obes 33:212–218

    CAS  Google Scholar 

  24. Hawkley LC, Cacioppo JT (2004) Stress and the aging immune system. Brain Behav Immun 18(2):114–119

    PubMed  CAS  Google Scholar 

  25. Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84(4):932–939

    PubMed  CAS  Google Scholar 

  26. Martin SA et al (2011) Voluntary-wheel exercise training attenuates the visceral adipose, but not central, inflammatory response to LPS in aged C57BL/6J mice. Brain Behav Immun 25(S2), S217–S218 (Abstract)

    Google Scholar 

  27. Ma H et al (2010) Effects of diet-induced obesity and voluntary wheel running on bone properties in young male C57BL/6J mice. Calcif Tissue Int 86:411–419

    PubMed  CAS  Google Scholar 

  28. Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47(4):364–369

    PubMed  CAS  Google Scholar 

  29. Tuli JS, Smith JA, Morton DB (1995) Stress measurements in mice after transportation. Lab Anim 29:132–138

    PubMed  CAS  Google Scholar 

  30. Jennings M et al (1998) Refining rodent husbandry: the mouse. Report of the Rodent Refinement Working Party. Lab Anim 32(3):233–259

    PubMed  CAS  Google Scholar 

  31. Clénet F et al (2006) Light/dark cycle manipulation influences mice behavior in the elevated plus maze. Behav Brain Res 166(1):140–149

    PubMed  Google Scholar 

  32. Ciarleglio CM et al (2009) Population encoding by circadian clock neurons organizes circadian behavior. J Neurosci 29(6):1670–1676

    PubMed  CAS  Google Scholar 

  33. Goulding EH et al (2008) A robust automated system elucidates mouse home cage behavioral structure. Proc Natl Acad Sci U S A 105(52):20575–20582

    PubMed  CAS  Google Scholar 

  34. National Research Council of the National Academies (2011) Guide for the care and use of laboratory animals. National Academy of Sciences, Washington, DC

    Google Scholar 

  35. Buchanan JB et al (2008) Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology 33(6):755–765

    PubMed  CAS  Google Scholar 

  36. Ajarem JS, Safar E, Ahmad M (2011) Effect of ethanol and thermal stresses on the social behavior of male mice. Asian J Biol Sci 4:362–368

    CAS  Google Scholar 

  37. Goshen I et al (2003) The role of endogenous interleukin-1 in stress-induced adrenal activation and adrenalectomy-induced adrenocorticotropic hormone hypersecretion. Endocrinology 144:4453–4458

    PubMed  CAS  Google Scholar 

  38. Naff KA et al (2007) Noise produced by vacuuming exceeds the hearing thresholds of C57BL/6 and CD1 mice. J Am Assoc Lab Anim Sci 46(1):52–57

    PubMed  CAS  Google Scholar 

  39. Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain Behav Immun 9(4):253–275

    PubMed  CAS  Google Scholar 

  40. Beishuizen A, Thijs LG (2003) Review: endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Innate Immun 9(1):3–24

    CAS  Google Scholar 

  41. Pfaff J (1974) Noise as an environmental problem in the animal house. Lab Anim 8:347–354

    PubMed  CAS  Google Scholar 

  42. Arakawa H, Cruz S, Deak T (2011) From models to mechanisms: odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci Biobehav Rev 35(9):1916–1928

    PubMed  Google Scholar 

  43. Alves GJ et al (2010) Odor cues from tumor-bearing mice induces neuroimmune changes. Behav Brain Res 214:357–367

    PubMed  CAS  Google Scholar 

  44. Conour LA, Murray KA, Brown MJ (2006) Preparation of animals for research—issues to consider for rodents and rabbits. ILAR J 47(4):283–293

    PubMed  CAS  Google Scholar 

  45. Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43(6):42–51

    PubMed  CAS  Google Scholar 

  46. Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826

    PubMed  CAS  Google Scholar 

  47. Koike H et al (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202(1):114–121

    PubMed  CAS  Google Scholar 

  48. Ma X et al (2011) Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PLoS One 6(6):e20955

    PubMed  CAS  Google Scholar 

  49. Avitsur R, Stark JL, Sheridan JF (2001) Social stress induces glucocorticoid resistance in subordinate animals. Horm Behav 39(4):247–257

    PubMed  CAS  Google Scholar 

  50. Pardon M et al (2004) Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding. Eur J Neurosci 20(4):1033–1050

    PubMed  Google Scholar 

  51. Van De Weerd HA et al (1994) Strain specific behavioural response to environmental enrichment in the mouse. J Exp Anim Sci 36:117–127

    PubMed  Google Scholar 

  52. Olsson AS, Dahlborn K (2001) Improving housing conditions for laboratory mice: a review of ‘environmental enrichment’. Lab Anim 36:243–270

    Google Scholar 

  53. Kent S et al (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    PubMed  CAS  Google Scholar 

  54. Dantzer R et al (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology 91:363–368

    PubMed  CAS  Google Scholar 

  55. Park SE et al (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 8:12

    PubMed  CAS  Google Scholar 

  56. Krzyszton CP et al (2008) Exacerbated fatigue and motor deficits in interleukin-10-deficient mice after peripheral immune stimulation. Am J Physiol Regul Integr Comp Physiol 295(4):R1109–R1114

    PubMed  CAS  Google Scholar 

  57. Pecaut MJ et al (2002) Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotarod, and acoustic startle. Cogn Affect Behav Neurosci 2(4):329–340

    PubMed  Google Scholar 

  58. Thor DH, Holloway WR (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96(6):1000–1006

    Google Scholar 

  59. Bluthé RM, Dantzer R, Kelley KW (1991) Interleukin-1 mediates behavioural but not metabolic effects of tumor necrosis factor α in mice. Eur J Pharmacol 209:281–283

    PubMed  Google Scholar 

  60. Bluthé RM, Schoenen J, Dantzer R (1990) Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Res 519:150–157

    PubMed  Google Scholar 

  61. Dantzer R, Bluthé RM, Kelley KW (1991) Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1-induced sickness behavior. Brain Res 557:115–120

    PubMed  CAS  Google Scholar 

  62. Abraham J et al (2008) Aging sensitizes mice to behavioral deficits induced by central HIV-1 gp120. Neurobiol Aging 29:614–621

    PubMed  CAS  Google Scholar 

  63. Sherry CL et al (2009) Behavioral recovery from acute hypoxia is reliant on leptin. Brain Behav Immun 23(2):169–175

    PubMed  CAS  Google Scholar 

  64. Cao JL et al (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30(49):16453–16458

    PubMed  CAS  Google Scholar 

  65. Basso AM et al (2009) Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 198:83–90

    PubMed  CAS  Google Scholar 

  66. Buchanan JB, Sparkman NL, Johnson RW (2010) A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation 7:82

    PubMed  Google Scholar 

  67. Fanelli MT, Kaplan ML (1978) Effects of high fat and high carbohydrate diets on the body composition and oxygen consumption of ob/ob mice. J Nutr 108(9):1491–1500

    PubMed  CAS  Google Scholar 

  68. Jones BJ, Roberts DJ (1968) The quantitative measurement of motor incoordination in naïve mice using and accelerating rotarod. J Pharm Pharmacol 20(4):302–304

    PubMed  CAS  Google Scholar 

  69. Tarantino LM, Gould TJ, Druhan JP, Bucan M (2000) Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mamm Genome 11:555–564

    PubMed  CAS  Google Scholar 

  70. Dang MT et al (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc Natl Acad Sci U S A 103(41):15254–15259

    PubMed  CAS  Google Scholar 

  71. Carter RJ, Morton AJ, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.12

    Google Scholar 

  72. Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37:519–533

    PubMed  CAS  Google Scholar 

  73. Deacon RMJ (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1(1):118–121

    PubMed  CAS  Google Scholar 

  74. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328

    PubMed  CAS  Google Scholar 

  75. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modeling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    PubMed  CAS  Google Scholar 

  76. Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould T (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New York

    Google Scholar 

  77. Petit-Demouliere B, Chenu F, Bourin M (2004) Forced swimming test in mice: a review of antidepressant activity. Psychophar­macology 177:245–255

    Google Scholar 

  78. Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp 22:e1088

    Google Scholar 

  79. Tonelli LH et al (2009) Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun 23:784–793

    PubMed  CAS  Google Scholar 

  80. Fromm L et al (2004) Magnesium attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats. J Am Coll Nutr 23(5):529S–533S

    PubMed  CAS  Google Scholar 

  81. Shepherd JK et al (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology 116:56–64

    PubMed  CAS  Google Scholar 

  82. Heisler LK et al (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor knockout mutant mice. Proc Natl Acad Sci U S A 95:15049–15054

    PubMed  CAS  Google Scholar 

  83. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4–5):571–625

    PubMed  CAS  Google Scholar 

  84. Porsolt RD et al (2001) Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci 8.10A.1–8.10A.10

    Google Scholar 

  85. Lad HV et al (2007) Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mamm Genome 18:482–491

    PubMed  Google Scholar 

  86. Steru L et al (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    PubMed  CAS  Google Scholar 

  87. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23(5):238–245

    PubMed  CAS  Google Scholar 

  88. Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants ­reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182:335–344

    PubMed  CAS  Google Scholar 

  89. Moreau M et al (2008) Innoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22(7):1087–1095

    PubMed  CAS  Google Scholar 

  90. Udo H et al (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28(53):14522–14536

    PubMed  CAS  Google Scholar 

  91. Hédou G et al (2001) An automated analysis of rat behavior in the forced swim test. Pharmacol Biochem Behav 70(1):65–76

    PubMed  Google Scholar 

  92. DSM-IV (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychological Association, Washington, DC

    Google Scholar 

  93. Strekalova T, Steinbusch H (2009) Factors of reproducibility of anhedonia induction in a chronic stress depression model in mice. In: Gould T (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New York

    Google Scholar 

  94. Niemi MB et al (2008) Neuro-immune associative learning. In: Lajtha A, Galoyan A, Besedovski HO (eds) Handbook of neurochemistry and molecular neurobiology. Springer, New York

    Google Scholar 

  95. Brennan PA, Keverne EB (1997) Neural mechanisms of mammalian olfactory learning. Prog Neurobiol 51(4):457–481

    PubMed  CAS  Google Scholar 

  96. Bryan KJ et al (2009) Chapter 1: transgenic mouse models of Alzheimer’s disease: ­behavioral testing and considerations. In: Buccafusco JJ (ed) Methods of behavior ­analysis in neuroscience, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  97. Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1(3):1306–1311

    PubMed  Google Scholar 

  98. Stefanko DP et al (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci U S A 106(23):9447–9452

    PubMed  CAS  Google Scholar 

  99. Win-Shwe TT, Fujimaki H (2012) Acute administration of toluene affects memory retention in novel object recognition test and memory function-related gene expression in mice. J Appl Toxicol 32(4):300–304

    PubMed  CAS  Google Scholar 

  100. Wehner JM, Radcliffe RA (2004) Cued and contextual fear conditioning in mice. Curr Protoc Neurosci Chapter 8:Unit 8.5C

    Google Scholar 

  101. Deacon RMJ, Rawlins JNP (2006) T-maze alternation in the rodent. Nat Protoc 1(1):7–12

    PubMed  Google Scholar 

  102. Lalonde R (2002) The neurological basis of spontaneous alternation. Neurosci Biobehav Rev 26:91–104

    PubMed  CAS  Google Scholar 

  103. Bekker A et al (2006) Isoflurane preserves spatial working memory in adult mice after ­moderate hypoxia. Anesth Analg 102:1134–1138

    PubMed  CAS  Google Scholar 

  104. Harrison FE et al (2006) Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem 13(6):809–819

    PubMed  Google Scholar 

  105. O’Leary TP, Brown RE (2009) Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 201:120–127

    PubMed  Google Scholar 

  106. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    PubMed  Google Scholar 

  107. Rosczyk HA, Sparkman NL, Johnson RW (2008) Neuroinflammation and cognitive function in aged mice following minor surgery. Exp Gerontol 43:840–846

    PubMed  CAS  Google Scholar 

  108. Dishman RK et al (2006) Neurobiology of exercise. Obesity 14:345–346

    PubMed  CAS  Google Scholar 

  109. Leasure JL, Jones M (2008) Forced a voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465

    PubMed  CAS  Google Scholar 

  110. Garland TH Jr et al (2011) The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 214(pt 2):206–229

    PubMed  Google Scholar 

  111. Noakes TD (2011) Time to move behind a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab 36:23–35

    PubMed  Google Scholar 

Download references

Support

This research was supported by the National Institutes of Health (DK064862, NS058525 and AA019357 to G.G.F.), USDA National Institute of Food and Agriculture, Hatch project #ILLU-971-32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

York, J.M., Blevins, N.A., Baynard, T., Freund, G.G. (2012). Mouse Testing Methods in Psychoneuroimmunology: An Overview of How to Measure Sickness, Depressive/Anxietal, Cognitive, and Physical Activity Behaviors. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 934. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-071-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-071-7_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-070-0

  • Online ISBN: 978-1-62703-071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics