Skip to main content

Construction of Gene-Targeting Vectors by Recombineering

  • Protocol
  • First Online:
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 530))

Abstract

Recombineering is a technology that utilizes the efficient homologous recombination functions encoded by λ phage to manipulate DNA in Escherichia coli. Construction of knockout vectors has been greatly facilitated by recombineering as it allows one to choose any genomic region to manipulate. We describe here an efficient recombineering-based protocol for making mouse conditional knockout targeting vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  3. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984;309:255–6.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–12.

    Article  PubMed  CAS  Google Scholar 

  5. Smithies O. Forty years with homologous recombination. Nat. Med. 2001;7:1083–6.

    Article  PubMed  CAS  Google Scholar 

  6. Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 1988;336:348–52.

    Article  PubMed  CAS  Google Scholar 

  7. van der Weyden L, Adams DJ, Bradley A. Tools for targeted manipulation of the mouse genome. Physiol. Genomics 2002;11:133–64.

    PubMed  Google Scholar 

  8. Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell 2007;128:9–13.

    Article  PubMed  CAS  Google Scholar 

  9. Bradley A, Hasty P, Davis A, Ramirez-Solis R. Modifying the mouse: design and desire. Biotechnology (NY) 1992;10:534–9.

    Article  CAS  Google Scholar 

  10. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439–42.

    Article  PubMed  CAS  Google Scholar 

  11. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994;265:103–6.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 1998;20:123–8.

    Article  PubMed  CAS  Google Scholar 

  13. Copeland NG, Jenkins NA, Court DL. Mouse genomic technologies recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2001;2:769–79.

    Article  PubMed  CAS  Google Scholar 

  14. Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination. Annu. Rev. Genet. 2002;36:361–88.

    Article  PubMed  CAS  Google Scholar 

  15. Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 2007;421:171–99.

    Article  PubMed  CAS  Google Scholar 

  16. Mythili E, Kumar KA, Muniyappa K. Characterization of the DNA-binding domain of beta protein, a component of phage lambda red-pathway, by UV catalyzed cross-linking. Gene 1996;182:81–7.

    Article  PubMed  CAS  Google Scholar 

  17. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 2000;97:5978–83.

    Article  PubMed  CAS  Google Scholar 

  18. Cassuto E, Lash T, Sriprakash KS, Radding CM. Role of exonuclease and protein of phage lambda in genetic recombination. V. Recombination of lambda DNA in vitro. Proc. Natl. Acad. Sci. USA 1971;68:1639–43.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang P, Li MZ, Elledge SJ. Towards genetic genome projects: genomic library screening and gene-targeting vector construction in a single step. Nat. Genet. 2002;30:31–9.

    Article  PubMed  Google Scholar 

  20. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000;97:6640–5.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy KC. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 1998;180:2063–71.

    PubMed  CAS  Google Scholar 

  22. Lee EC, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 2001;73:56–65.

    Google Scholar 

  23. Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 2003;13:476–84.

    Article  PubMed  CAS  Google Scholar 

  24. Angrand PO, Daigle N, van der Hoeven F, Scholer HR, Stewart AF. Simplified generation of targeting constructs using ET recombination. Nucleic Acids Res. 1999;27:e16.

    Article  PubMed  CAS  Google Scholar 

  25. Valenzuela DM, Murphy AJ, Frendewey D, et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 2003;21:652–9.

    Article  PubMed  CAS  Google Scholar 

  26. Cotta-de-Almeida V, Schonhoff S, Shibata T, Leiter A, Snapper SB. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria. Genome Res. 2003;13:2190–4.

    Article  PubMed  CAS  Google Scholar 

  27. Chan W, Costantino N, Li R, et al. A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res. 2007;35:e64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, SC., Wang, W., Liu, P. (2009). Construction of Gene-Targeting Vectors by Recombineering. In: Wurst, W., Kühn, R. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 530. Humana Press. https://doi.org/10.1007/978-1-59745-471-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-471-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-26-8

  • Online ISBN: 978-1-59745-471-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics