Skip to main content

Aggregation Chimeras: Combining ES Cells, Diploid, and Tetraploid Embryos

  • Protocol
  • First Online:
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 530))

Abstract

During the past 40 years, mouse chimeras have served as invaluable tools for studying not only genetics but also embryonic development, and the path from undifferentiated cell populations to fully committed functional cell types. This chapter gives a description of the early events of cell commitment and differentiation in the pre-and postimplantation-stage embryo. Next, a discussion follows highlighting the most commonly used as well as more recently developed applications of various cell types and origins used in the production of chimeras. Finally, detailed protocols and trouble-shooting suggestions will be presented for each of the steps involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagy A, Rossant J. Chimaeras and mosaics for dissecting complex mutant phenotypes. Int J Dev Biol 2001; 45:577–82.

    PubMed  CAS  Google Scholar 

  2. Rossant J. Investigation of the determinative state of the mouse inner cell mass. II. The fate of isolated inner cell masses transferred to the oviduct. J Embryol Exp Morphol 1975; 33:991–1001.

    PubMed  CAS  Google Scholar 

  3. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–6.

    Article  PubMed  CAS  Google Scholar 

  4. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78:7634–8.

    Google Scholar 

  5. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 1993; 90:8424–8.

    Google Scholar 

  6. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science 1998; 282:2072–5.

    Article  PubMed  CAS  Google Scholar 

  7. Kunath T, Arnaud D, Uy GD, et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 2005; 132:1649–61.

    Article  PubMed  CAS  Google Scholar 

  8. Nagy A, Gocza E, Diaz EM, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990; 110:815–21.

    PubMed  CAS  Google Scholar 

  9. Kaufman MH, Webb S. Postimplantation development of tetraploid mouse embryos produced by electrofusion. Development 1990; 110:1121–32.

    PubMed  CAS  Google Scholar 

  10. Kubiak JZ, Tarkowski AK. Electrofusion of mouse blastomeres. Exp Cell Res 1985; 157:561–6.

    Article  PubMed  CAS  Google Scholar 

  11. Nagy A, Rossant J. Production of ES-cell aggregation chimeras. In: Joyner A, ed. Gene Targeting: A Practical Approach. Oxford, UK: IRL Press at Oxford University 1999; 177–205.

    Google Scholar 

  12. Lu TY, Markert CL. Manufacture of diploid/tetraploid chimeric mice. Proc Natl Acad Sci USA 1980; 77:6012–6.

    Google Scholar 

  13. Tanaka M, Gertsenstein M, Rossant J, Nagy A. Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol 1997; 190:55–65.

    Article  PubMed  CAS  Google Scholar 

  14. Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL. Essential role of Mash-2 in extraembryonic development. Nature 1994; 371:333–6.

    Article  PubMed  CAS  Google Scholar 

  15. Ueda O, Jishage K, Kamada N, Uchida S, Suzuki H. Production of mice entirely derived from embryonic stem (ES) cell with many passages by coculture of ES cells with cytochalasin B induced tetraploid embryos. Exp Anim 1995; 44:205–10.

    Article  PubMed  CAS  Google Scholar 

  16. George SH, Gertsenstein M, Vintersten K, et al. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc Natl Acad Sci USA 2007; 104:4455–60.

    Google Scholar 

  17. Draper JS, Nagy A. Improved embryonic stem cell technologies. Handb Exp Pharmacol 2007:107–28.

    Google Scholar 

  18. Wood SA, Allen ND, Rossant J, Auerbach A, Nagy A. Non-injection methods for the production of embryonic stem cell–embryo chimaeras. Nature 1993; 365:87–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hogan B, Beddington R, Constantini F, Lacy E. Manipulating the Mouse Embryo: Cold Spring Harbor Laboratory Press; 1994.

    Google Scholar 

  20. Collins FS, Finnell RH, Rossant J, Wurst W. A new partner for the International Knockout Mouse Consortium. Cell 2007; 129:235.

    Article  PubMed  CAS  Google Scholar 

  21. Eggan K, Akutsu H, Loring J, et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 2001; 98:6209–14.

    Google Scholar 

  22. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380:435–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang P, Liegeois NJ, Wong C, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 1997; 387:151–8.

    Article  PubMed  CAS  Google Scholar 

  24. Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997; 11:973–83.

    Article  PubMed  CAS  Google Scholar 

  25. Riley P, Anson-Cartwright L, Cross JC. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet 1998; 18:271–5.

    Article  PubMed  CAS  Google Scholar 

  26. Partanen J, Puri MC, Schwartz L, Fischer KD, Bernstein A, Rossant J. Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial cell survival during murine development. Development 1996; 122:3013–21.

    PubMed  CAS  Google Scholar 

  27. Shalaby F, Ho J, Stanford WL, et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89:981–90.

    Article  PubMed  CAS  Google Scholar 

  28. Varlet I, Collignon J, Robertson EJ. Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 1997; 124:1033–44.

    PubMed  CAS  Google Scholar 

  29. Damert A, Miquerol L, Gertsenstein M, Risau W, Nagy A. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 2002; 129:1881–92.

    PubMed  CAS  Google Scholar 

  30. Rossant J. Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 1996; 78:349–53.

    PubMed  CAS  Google Scholar 

  31. Duncan SA, Nagy A, Chan W. Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(–/–) embryos. Development 1997; 124:279–87.

    PubMed  CAS  Google Scholar 

  32. Rossant J, Guillemot F, Tanaka M, Latham K, Gertenstein M, Nagy A. Mash2 is expressed in oogenesis and preimplantation development but is not required for blastocyst formation. Mech Dev 1998; 73:183–91.

    Article  PubMed  CAS  Google Scholar 

  33. Braun T, Arnold HH. ES-cells carrying two inactivated myf-5 alleles form skeletal muscle cells: activation of an alternative myf-5-independent differentiation pathway. Dev Biol 1994; 164:24–36.

    Article  PubMed  CAS  Google Scholar 

  34. Mortensen RM, Conner DA, Chao S, Geisterfer-Lowrance AA, Seidman JG. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol 1992; 12:2391–5.

    PubMed  CAS  Google Scholar 

  35. Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 2003; 21:559–61.

    Article  PubMed  CAS  Google Scholar 

  36. Wurst W, Joyner A. Embryonic stem cell, creating transgenic animals. In: Joyner A, ed. Gene Targeting: A Practical Approach. Oxford, UK: IRL Press at Oxford University; 1993:33–62.

    Google Scholar 

  37. Pirity M, Hadjantonakis A-K, Nagy A. Cell Culture for Cell and Molecular Biologist. In: Mather JP, Barnes D, eds. San Diego: Academic Press 1998; 279–93.

    Google Scholar 

  38. Nagy A. Manipulating the mouse embryo: A Laboratory Manual. 3rd ed: Cold Spring Harbor Laboratory Press 2003.

    Google Scholar 

  39. Gagneten S, Le Y, Miller J, Sauer B. Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res 1997; 25:3326–31.

    Article  PubMed  CAS  Google Scholar 

  40. Hadjantonakis AK, Nagy A. FACS for the isolation of individual cells from transgenic mice harboring a fluorescent protein reporter. Genesis 2000; 27:95–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tanaka, M., Hadjantonakis, AK., Vintersten, K., Nagy, A. (2009). Aggregation Chimeras: Combining ES Cells, Diploid, and Tetraploid Embryos. In: Wurst, W., Kühn, R. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 530. Humana Press. https://doi.org/10.1007/978-1-59745-471-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-471-1_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-26-8

  • Online ISBN: 978-1-59745-471-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics