Skip to main content

Integrative Literature and Data Mining to Rank Disease Candidate Genes

  • Protocol
  • First Online:
Biomedical Literature Mining

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1159))

Abstract

While the genomics-derived discoveries promise benefits to basic research and health care, the speed and affordability of sequencing following recent technological advances has further aggravated the data deluge. Seamless integration of the ever-increasing clinical, genomic, and experimental data and efficient mining for knowledge extraction, delivering actionable insight and generating testable hypotheses are therefore critical for the needs of biomedical research. For instance, high-throughput techniques are frequently applied to detect disease candidate genes. Experimental validation of these candidates however is both time-consuming and expensive. Hence, several computational approaches based on literature and data mining have been developed to identify the most promising candidates for follow-up studies. Based on “guilt by association” principle, most of these methods use prior knowledge about a disease of interest to discover and rank novel candidate genes. In this chapter, we provide a brief overview of recent advances made in literature- and data-mining-based approaches for candidate gene prioritization. As a case study, we focus on a Web-based computational approach that uses integrated heterogeneous data sources including gene–literature associations for ranking disease candidate genes and explain how to run typical queries using this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung WA, Ouellette BF, Wasserman WW (2012) Inferring novel gene-disease associations using Medical Subject Heading Over-representation Profiles. Genome Med 4(9):75

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R (2012) Text-mining solutions for biomedical research: enabling integrative biology. Nat Rev Genet 13(12):829–839

    Article  PubMed  CAS  Google Scholar 

  3. Bodenreider O (2004) The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res 32(Suppl 1):D267–D270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Smith CL, Goldsmith C-A, Eppig JT (2005) The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 6(1):R7

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gault LV, Shultz M, Davies KJ (2002) Variations in Medical Subject Headings (MeSH) mapping: from the natural language of patron terms to the controlled vocabulary of mapped lists. J Med Libr Assoc 90(2):173

    PubMed Central  PubMed  Google Scholar 

  6. McKusick VA (1998) Mendelian inheritance in man: a catalog of human genes and genetic disorders. Johns Hopkins University Press, Maryland, USA

    Google Scholar 

  7. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Cohen KB, Hunter LE (2013) Text mining for translational bioinformatics. PLoS Comput Biol 9(4):e1003044

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mattingly CJ, Colby GT, Forrest JN, Boyer JL (2003) The Comparative Toxicogenomics Database (CTD). Environ Health Perspect 111(6):793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Klein T, Chang J, Cho M, Easton K, Fergerson R, Hewett M, Lin Z, Liu Y, Liu S, Oliver D (2001) Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenomics J 1(3):167–170

    Article  PubMed  CAS  Google Scholar 

  11. Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36(Suppl 1):D684–D688

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36(7):664

    Article  PubMed  CAS  Google Scholar 

  13. Olsen C, Djebbari A, Bontempi G, Correll M, Bouton C, Haibe-Kains B, Quackenbush J (2012) Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks. Nucleic Acids Res 40(D1):D866–D875

    Google Scholar 

  14. Rzhetsky A, Koike T, Kalachikov S, Gomez SM, Krauthammer M, Kaplan SH, Kra P, Russo JJ, Friedman C (2000) A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16(12):1120–1128

    Article  PubMed  CAS  Google Scholar 

  15. Frijters R, Heupers B, van Beek P, Bouwhuis M, van Schaik R, de Vlieg J, Polman J, Alkema W (2008) CoPub: a literature-based keyword enrichment tool for microarray data analysis. Nucleic Acids Res 36(Suppl 2):W406–W410

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Müller H-M, Kenny EE, Sternberg PW (2004) Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol 2(11):e309

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pafilis E, O’Donoghue SI, Jensen LJ, Horn H, Kuhn M, Brown NP, Schneider R (2009) Reflect: augmented browsing for the life scientist. Nat Biotechnol 27(6):508–510

    Article  PubMed  CAS  Google Scholar 

  18. Fo B, Nolin M-A, Tourigny N, Rigault P, Morissette J (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 41(5):706–716

    Article  Google Scholar 

  19. Aronson AR (2001) Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA symposium, 2001. American Medical Informatics Association, p 17

    Google Scholar 

  20. Hristovski D, Peterlin B, Mitchell JA, Humphrey SM (2005) Using literature-based discovery to identify disease candidate genes. Int J Med Inform 74(2–4):289–298

    Article  PubMed  Google Scholar 

  21. Jourquin J, Duncan D, Shi Z, Zhang B (2012) GLAD4U: deriving and prioritizing gene lists from PubMed literature. BMC Genomics 13(Suppl 8):S20

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liekens AM, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J (2011) BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol 12(6):R57

    Article  PubMed Central  PubMed  Google Scholar 

  23. Yoshida Y, Makita Y, Heida N, Asano S, Matsushima A, Ishii M, Mochizuki Y, Masuya H, Wakana S, Kobayashi N (2009) PosMed (Positional Medline): prioritizing genes with an artificial neural network comprising medical documents to accelerate positional cloning. Nucleic Acids Res 37(Suppl 2):W147–W152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Swanson DR, Smalheiser NR (1997) An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif Intell 91(2):183–203

    Article  Google Scholar 

  25. Swanson DR (1990) Medical literature as a potential source of new knowledge. Bull Med Libr Assoc 78(1):29

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Makita Y, Kobayashi N, Yoshida Y, Doi K, Mochizuki Y, Nishikata K, Matsushima A, Takahashi S, Ishii M, Takatsuki T, Bhatia R, Khadbaatar Z, Watabe H, Masuya H, Toyoda T (2013) PosMed: ranking genes and bioresources based on Semantic Web Association Study. Nucleic Acids Res 41(Web Server issue):W109–W114

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311. doi:10.1093/nar/gkp427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544

    Article  PubMed  CAS  Google Scholar 

  29. Smalheiser NR, Torvik VI, Zhou W (2009) Arrowsmith two-node search interface: a tutorial on finding meaningful links between two disparate sets of articles in MEDLINE. Comput Methods Programs Biomed 94(2):190

    Article  PubMed Central  PubMed  Google Scholar 

  30. Frijters R, van Vugt M, Smeets R, van Schaik R, de Vlieg J, Alkema W (2010) Literature mining for the discovery of hidden connections between drugs, genes and diseases. PLoS Comput Biol 6(9):e1000943

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lindsay RK, Gordon MD (1999) Literature-based discovery by lexical statistics. J Am Soc Inform Sci 50(7):574–587

    Google Scholar 

  32. Kemper B, Matsuzaki T, Matsuoka Y, Tsuruoka Y, Kitano H, Ananiadou S, Ji T (2010) PathText: a text mining integrator for biological pathway visualizations. Bioinformatics 26(12):i374–i381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Rzhetsky A, Iossifov I, Koike T, Krauthammer M, Kra P, Morris M, Yu H, Duboue PA, Weng W, Wilbur WJ, Hatzivassiloglou V, Friedman C (2004) GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J Biomed Inform 37(1):43–53. doi:10.1016/j.jbi.2003.10.001

    Article  PubMed  CAS  Google Scholar 

  34. Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A (2004) Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(42):15148–15153. doi:10.1073/pnas.0404315101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Özgür A, Vu T, Erkan G, Radev DR (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24(13):i277–i285. doi:10.1093/bioinformatics/btn182

    Article  PubMed Central  PubMed  Google Scholar 

  36. Coulet A, Shah NH, Garten Y, Musen M, Altman RB (2010) Using text to build semantic networks for pharmacogenomics. J Biomed Inform 43(6):1009–1019. doi:10.1016/j.jbi.2010.08.005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Percha B, Garten Y, Altman RB (2012) Discovery and explanation of drug-drug interactions via text mining. In: Pacific symposium on biocomputing. Pacific symposium on biocomputing, 2012. World Scientific, p 410

    Google Scholar 

  38. Hoehndorf R, Schofield PN, Gkoutos GV (2011) PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res 39(18):e119. doi:10.1093/nar/gkr538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Freudenberg J, Propping P (2002) A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 18 Suppl 2:S110–S115

    Google Scholar 

  40. Turner FS, Clutterbuck DR, Semple CA (2003) POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol 4(11):R75

    Article  PubMed Central  PubMed  Google Scholar 

  41. Tiffin N, Kelso JF, Powell AR, Pan H, Bajic VB, Hide WA (2005) Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res 33(5):1544–1552

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6:55

    Article  PubMed Central  PubMed  Google Scholar 

  43. Thornblad TA, Elliott KS, Jowett J, Visscher PM (2007) Prioritization of positional candidate genes using multiple web-based software tools. Twin Res Hum Genet 10(6):861–870

    Article  PubMed  Google Scholar 

  44. Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3(7):420–427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C, Perez-Iratxeta C, Andrade-Navarro MA, Adeyemo A, Patti ME, Semple CA, Hide W (2006) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 34(10):3067–3081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2006) SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22(6):773–774

    Article  PubMed  CAS  Google Scholar 

  47. Chen J, Xu H, Aronow BJ, Jegga AG (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8:392

    Article  PubMed Central  PubMed  Google Scholar 

  48. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690. doi:10.1073/pnas.0701361104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Jimenez-Sanchez G, Childs B, Valle D (2001) Human disease genes. Nature 409(6822):853–855

    Article  PubMed  CAS  Google Scholar 

  50. Smith NG, Eyre-Walker A (2003) Human disease genes: patterns and predictions. Gene 318:169–175

    Article  PubMed  CAS  Google Scholar 

  51. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36(Web Server issue):W377–W384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC, Mattingly CJ (2009) Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical-gene-disease networks. Nucleic Acids Res 37(Database issue):D786–D792. doi:10.1093/nar/gkn580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Popescu M, Keller JM, Mitchell JA (2006) Fuzzy measures on the gene ontology for gene product similarity. IEEE/ACM Trans Comput Biol Bioinform 3(3):263–274

    Article  PubMed  CAS  Google Scholar 

  54. Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger M, Lacombe D, Genevieve D, Fontana E, Darra F, Cances C, Barth M, Bonneau D, Bernadina BD, N’Guyen S, Gitiaux C, Parent P, des Portes V, Pedespan JM, Legrez V, Castelnau-Ptakine L, Nitschke P, Hieu T, Masson C, Zelenika D, Andrieux A, Francis F, Guerrini R, Cowan NJ, Bahi-Buisson N, Chelly J (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45(6):639–647. doi:10.1038/ng.2613

    Article  PubMed  CAS  Google Scholar 

  55. Hamosh A, Scott A, Amberger J, Bocchini C, McKusick V (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36(5):431–432. doi:10.1038/ng0504-431

    Article  PubMed  CAS  Google Scholar 

  57. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367. doi:10.1073/pnas.0903103106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188(4184):107–116

    Article  PubMed  CAS  Google Scholar 

  60. Korstanje R, Paigen B (2002) From QTL to gene: the harvest begins. Nat Genet 31(3):235–236

    Article  PubMed  CAS  Google Scholar 

  61. Mackay TF (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2(1):11–20

    Article  PubMed  CAS  Google Scholar 

  62. Bromberg Y (2013) Chapter 15: disease gene prioritization. PLoS Comput Biol 9(4):e1002902. doi:10.1371/journal.pcbi.1002902

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Tranchevent LC, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P, Moreau Y (2011) A guide to web tools to prioritize candidate genes. Brief Bioinform 12(1):22–32. doi:10.1093/bib/bbq007

    Article  PubMed  CAS  Google Scholar 

  64. Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically inherited diseases using data mining. Nat Genet 31(3):316–319

    PubMed  CAS  Google Scholar 

  65. Perez-Iratxeta C, Wjst M, Bork P, Andrade MA (2005) G2D: a tool for mining genes associated with disease. BMC Genet 6:45

    Article  PubMed Central  PubMed  Google Scholar 

  66. van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG (2003) A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur J Hum Genet 11(1):57–63

    Article  PubMed  Google Scholar 

  67. van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG, Vriend G (2005) GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res 33(Web Server issue):W758–W761

    Article  PubMed Central  PubMed  Google Scholar 

  68. Masseroli M, Galati O, Pinciroli F (2005) GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res 33(Web Server issue):W717–W723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Masseroli M, Martucci D, Pinciroli F (2004) GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining. Nucleic Acids Res 32(Web Server issue):W293–W300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, Macii E, Benini L, Volinia S (2006) TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res 34(Web Server issue):W285–W292

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14(5):535–542

    Article  PubMed  Google Scholar 

  72. Franke L, Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78(6):1011–1025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil G. Jegga D.V.M., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, C., Zhu, C., Jegga, A.G. (2014). Integrative Literature and Data Mining to Rank Disease Candidate Genes. In: Kumar, V., Tipney, H. (eds) Biomedical Literature Mining. Methods in Molecular Biology, vol 1159. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0709-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0709-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0708-3

  • Online ISBN: 978-1-4939-0709-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics