Pharmacopsychiatry 2008; 41: S51-S59
DOI: 10.1055/s-2008-1081463
Review

© Georg Thieme Verlag KG Stuttgart · New York

The Molecular and Cellular Neurobiology of Nicotine Abuse in Schizophrenia

A. Mobascher 1 , G. Winterer 1
  • 1Department of Psychiatry, Heinrich-Heine-University, Duesseldorf, Germany
Further Information

Publication History

Publication Date:
28 August 2008 (online)

Abstract

People with schizophrenia suffer from a variety of symptoms that can be categorized as positive, negative and cognitive symptoms. Cognitive symptoms are not properly treated with antipsychotic medication and are the major cause of disability associated with the disorder. People with schizophrenia smoke more frequently and heavily than the general population. This observation in view of the well established role of nicotinic, cholinergic neurotransmission in cognition led to the hypothesis that people with schizophrenia may use nicotine as a self-medication to ameliorate cognitive symptoms associated with their disease. Furthermore genetic and post-mortem studies point to additional links between nicotinic cholinergic neurotransmission and schizophrenia. This article provides an insight in the possible relationship between schizophrenia and smoking behavior. We focus on the effects of nicotine on individual neurons as well as on neuronal networks. With respect to single neurons the immediate electrophysiological consequences of nicotinic stimulation and the more “metabotropic” effects related to intracellular signal transduction cascades that may lead to plastic changes in the neuron are discussed. With respect to the network level, three systems are discussed: cognition, reward and stress response. The effects of nicotine on cognition may be most pertinent to the problem of schizophrenia, but schizophrenics may also smoke to regulate mood and reduce stress. A better understanding of the molecular and cellular effects of nicotine and how they are related to the pathophysiology and symptomatology of schizophrenia may help to identify new targets for the pharmacotherapy of schizophrenia and of nicotine addiction in schizophrenia.

References

  • 1 Adams CE, Stevens KE. Evidence for a role of nicotinic acetylcholine receptors in schizophrenia.  Front Biosci. 2007;  12 4755-4772
  • 2 Addington J. Group treatment for smoking cessation among persons with schizophrenia.  Psychiatr Serv. 1998;  49 925-928
  • 3 Adler LE, Hoffer LD, Wiser A, Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients.  Am J Psychiatry. 1993;  150 1856-1861
  • 4 Al Abisi M. Hypothalamic-pituitary-adrenocortical responses to psychological stress and risk for smoking relapse.  Int J Psychophysiol. 2006;  59 218-227
  • 5 Andreas S, Loddenkemper R. Tabakprävention.  Pulmonologie und Intensivmedizin. 2008;  , in press
  • 6 Balfour DJK, Wright AE, Benwell MEM, Birrell CE. The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence.  Behav Brain Res. 2000;  113 73-83
  • 7 Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov Raul R, Borrelli E, Caron MG. Regulation of Akt signalling by D2 and D3 dopamine receptors in vivo.  J Neurosci. 2007;  27 881-885
  • 8 Bender W, Albus M, Möller HJ, Tretter F. Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) 4-9
  • 9 Besson M, Granon S, Mameli-Engvall M, Cloez-Tayarani I, Maubourguet N, Cormier A, Cazala P, David V, Changeux JP, Faure P. Long-term effects of chronic nicotine exposure on brain nicotinic receptors.  PNAS. 2007;  104 8155-8160
  • 10 Bilkei-Gorzo A, Racz I, Michel K, Darvas M, Maldonado R, Zimmer A. A common genetic predisposition to stress sensitivity and stress-induced nicotine craving.  Biol Psychiatry. 2007;  , in press
  • 11 Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M. Broad-sprectrum efficacy, across cognitive domains by α7 nicotinic acetylcholine receptor agonism correlates with activation of ERK 1/2 and CREB phosphorylation pathways.  J Neurosci. 2007;  27 10578-10587
  • 12 Breslau N, Johnson EO. Predicting smoking cessation and major depression in nicotine-dependent smokers.  Am J Public Health. 2000;  90 1122-1127
  • 13 Breslau N, Kilbey MM, Andreski P. Nicotine dependence and major depression. New evidence form a prospective investigation.  Arch Gen Psychiatry. 1993;  50 31-35
  • 14 Cardenas L, Tremblay LK, Naranjo CA, Herrmann N, Zack M, Busto UE. Brain reward system activity in major depression and comorbid nicotine dependence.  J Pharmacol Exp Ther. 2002;  302 1265-1271
  • 15 Cattapan-Ludewig K, Ludewig S, Jaquenoud Sirot E, Etzensberger M, Hasler F. Why do schizophrenic patients smoke?.  Nervenarzt. 2005;  76 287-294
  • 16 Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. Dopamin D1/D5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca++-dependent intracellular signalling.  J Neurophysiol. 2007;  97 2448-2464
  • 17 Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD. Distributed network actions by nicotine increase the threshold for spike-timing dependent plasticity in prefrontal cortex.  Neuron. 2007;  54 73-87
  • 18 Dani JA, Biasi M De. Cellular mechanisms of nicotine addiction.  Pharmacology, Biochemistry and Behavior. 2001;  70 439-446
  • 19 Leon J de, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM. Schizophrenia and smoking: an epidemiological survey in a state hospital.  Am J Psychiatry. 1995;  152 453-455
  • 20 Chiara G Di, Bassareo V, Fenu S, Luca MA De, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D. Dopamine and drug addiction: the nucleus accumbens shell connection.  Neuropharmacol. 2004;  47 227-241
  • 21 Durany N, Zöchlinger R, Boissl KW, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Deckert J, Riederer P. Human post-mortem striatal alpha4beta2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson's syndrome.  Neurosci Lett. 2000;  287 109-112
  • 22 Edwards JA, Wesnes K, Warburton DM, Gale A. Evidence of more rapid stimulus evaluation following cigarette smoking.  Addict Behav. 1985;  10 113-126
  • 23 Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired Akt1-GSK3beta signaling in schizophrenia.  Nat Genet. 2004;  36 131-137
  • 24 Fagen ZM, Mitchum R, Vezina P, MacGehee DS. Enhanced nicotinic receptor function and drug abuse vulnerability.  J Neurosci. 2007;  27 8771-8778
  • 25 Ferrari R, Le Novere N, Picciotto MR, Changeux JP, Zoli M. Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections.  Eur J Neurosci. 2002;  15 1810-1818
  • 26 Fischbach GD. NRG1 and synaptic function in the CNS.  Neuron. 2007;  54 495-497
  • 27 Freedman R, Hall M, Adler LE, Leonard S. Evidence in post-mortem brain tissue for decreased number of hippocampal nicotinic receptors in schizophrenia.  Biol Psychiatry. 1995;  38 22-33
  • 28 Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia.  J Chem Neuroanat. 2000;  20 299-306
  • 29 Fuxe K, Andersson K, Eneroth P, Harfstrand A, Agnati LF. Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications.  Psychoneuroendocrinology. 1989;  14 19-41
  • 30 Fujii S, Ji Z, Morita N, Sumikawa K. Acute and chronic nicotine exposure differentially facilitate the induction of LTP.  Brain Res. 1999;  846 137-143
  • 31 Gallinat J, Obermayer K, Heinz A. Systems neurobiology of the dysfunctional brain: Schizophrenia.  Pharmacopsychiatry. 2007;  40 ((Suppl 1)) 40-44
  • 32 Gallinat J, Heinz A. Combination of multimodal imaging and molecular genetic information to investigate complex psychiatric disorders.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) 76-79
  • 33 Ge S, Dani JA. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation.  J Neurosci. 2005;  25 6084-6091
  • 34 Glassman AH, Stetner F, Walsh BT, Raizman PS, Fleiss JL, Cooper TB, Covey LS. Heavy smokers, smoking cessation, and clonidine. Results of a double-blind, randomized trial.  JAMA. 1988;  259 2863-2866
  • 35 Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance.  Trends Pharmacol Sci. 2006;  27 482-491
  • 36 Hahn B, Ross TJ, Yang Y, Kim I, Huestis MA, Stein EA. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network.  J Neurosci. 2007;  27 3477-3489
  • 37 Hahn B, Sharples CG, Wonnacott S, Shoaib M, Stolerman IP. Attentional effects of nicotinic agonists in rats.  Neurophyrmacology. 2003;  44 1054-1067
  • 38 Hahn B, Shoaib M, Stolerman IP. Nicotine-induced enhancement of attention in the five-choice serial reaction time task. The influence of task demands.  Psychopharmacology (Berl). 2002;  162 129-137
  • 39 Haro R, Drucker-Colin R. A two-year study on the effects of nicotine and its withdrawal on mood and sleep.  Pharmacopsychiatry. 2004;  37 221-227
  • 40 Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R. Effects of nicotine on cognitive deficits in schizophrenia.  Neuropsychopharmacology. 2004;  29 1378-1385
  • 41 Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression and neuropathology: on the matter of their convergence.  Mol Psychiatry. 2005;  10 40-68
  • 42 Heinz A, Schmidt LG, Reischies FM. Anhedonia in schizophrenic, depressed and alcohol-dependent patients – neurobiological correlates.  Pharmacopsychiatry. 1994;  27 ((Suppl. 1)) 7-10
  • 43 Hennekens CH. Increasing global burden of cardiovascular disease in general populations and patients with schizophrenia.  J Clin Psychiatry. 2007;  68 ((Suppl 4)) 4-7
  • 44 Houlihan ME, Pritchard WS, Krieble KK, Robinson JH, Duke DW. Effects of cigarette smoking on EEG spectral-band power, dimensional complexity, and nonlinearity during reaction time task performance.  Psychophysiology. 1996a;  33 740-746
  • 45 Houlihan ME, Pritchard WS, Robinson JH. Faster P300 latency after smoking in visual but not auditory oddball tasks.  Psychopharmacology. 1996b;  123 231-238
  • 46 Ikemoto S. Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens – olfactory tubercle complex.  Brain Res Rev. 2007;  , in press
  • 47 Inoue Y, Yao L, Hopf W, Fan P, Jiang Z, Bronci A, Diamond I. Nicotine and ethanol activate protein kinase A synergistically via Gißγ subunits in nucleus acumbens/ventral tegmental cocultures: The role of dopamine D1/D2 and adenosine A2A receptors.  J Pharmacol Exp Ther. 2007;  322 23-29
  • 48 Javitt DC. Treatment of negative and cognitive symptoms.  Curr Psychiatry Rep. 1999;  1 25-30
  • 49 Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity.  Neuron. 2001;  31 131-141
  • 50 Jope RS, Roh MS. Glycogen synthase kinase-3 (GSK3) in psychiatric disease and therapeutic interventions.  Curr Drug Targets. 2006;  7 1421-1434
  • 51 Juckel G, Sass L, Heinz A. Anhedonia, self-experience in schizophrenia, and implications for treatment.  Pharmacopsychiatry. 2003;  36 ((Suppl 3)) 176-180
  • 52 Kanakry CG, Li Z, Nakai Y, Sei Y, Weinberger DR. Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: potential implications for schizophrenia and cancer.  PLoS One. 2007;  2 ((12)) e1369
  • 53 Kelleher RJ, Govindarajan A, Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity.  Neuron. 2004;  44 59-73
  • 54 Keuthen NJ, Niaura RS, Borrelli B, Goldstein M, DePue J, Murphy C, Gastfriend D, Reiter SR, Abrams D. Comorbidity, smoking behavior and treatment outcome.  Psychother Psychosom. 2000;  69 244-250
  • 55 Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaide A. 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A ß-amyloid-induced neurotoxicity.  J Biol Chem. 2001;  276 13541-13546
  • 56 Kwon OB, Longart M, Vullhorst D, Hoffman DA, Buonanno A. Neuregulin-1 reverses long-term potentiation at Ca1 hippocampal synapses.  J Neurosci. 2005;  25 9378-9383
  • 57 Lang UE, Puls I, Müller DJ, Strutz-Seebohm Gallinat J. Molecular mechanisms of schizophrenia.  Cell Phys Biochem. 2007;  20 687-702
  • 58 Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, MacCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study.  JAMA. 2000;  284 2606-2610
  • 59 Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, MacCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study.  JAMA. 2000;  284 2606-2610
  • 60 Lawrence NS, Ross TJ, Stein EA. Cognitive mechanisms of nicotine on visual attention.  Neuron. 2002;  36 539-548
  • 61 Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P. Association of promoter variants in the alpha 7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia.  Arch Gen Psychiatry. 2002;  59 1085-1096
  • 62 Levin ED, MacClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification and anatomical localization.  Psychopharmacol. 2006;  184 523-439
  • 63 Levine Conners CK, Silva D, Canu W, March J. Effects of chronic nicotine and methylphenidate in adults with ADHD.  Exp Clin Pharmacol. 2001;  9 83-90
  • 64 Levine ED, Conners CK, Sparrow E, Hinton SC, Erhardt D, Meck WH, Rose JE, March J. Nicotine effects on adults with attention-deficit/hyperactivity disorder.  Psychopharmacology (Berin). 1996;  123 55-63
  • 65 Li B, Woo RS, Mei L, Malinow R. The neuregulin-1 receptor ErbB4 controls glutamatergic synapse maturation and plasticity.  Neuron. 2007;  54 583-597
  • 66 LoPiccolo J, Granville CA, Gills JJ, Dennis PA. Targeting Akt in cancer therapy.  Anticancer Drugs. 2007;  18 861-874
  • 67 Lovallo WR. Cortisol secretion patterns in addiction and addiction risk.  Int J Psychpharmacol. 2006;  59 195-202
  • 68 Matta SG, Fu Y, Valentine JD, Sharp BM. Response of the hypothalamo-pituitary-adrenalo axis to nicotine.  Psychoneuroendocrinology. 1998;  23 103-113
  • 69 Manning BD, Cantley LC. Akt/PKB signalling: navigating downstream.  Cell. 2007;  129 1261-1274
  • 70 Mann EO, Greenfield SA. Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro.  J Physiol. 2003;  551 539-550
  • 71 Mansvelder HD, Aerde KI van, Couey JJ, Brussaard AB. Nicotinic modulation of neuronal networks: from receptors to cognition.  Psychopharmacol. 2006;  184 292-305
  • 72 Mansvelder HD, MacGee DS. Long-term potentiation of excita-tory inputs to brain reward areas by nicotine.  Neuron. 2000;  27 349-357
  • 73 Mansvelder H, Keath JR, MacGehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas.  Neuron. 2002;  33 905-919
  • 74 MacGehee DS. Nicotine and synaptic plasticity in the prefrontal cortex.  Sci STKE. 2007;  pe44
  • 75 Meisenzahl EM, Scheuerecker J, Schmitt GJ, Möller HJ. Dopamine, prefrontal cortex and working memory functioning in schizophrenia.  Pharmacopsychiatry. 2007;  40 ((Suppl 1)) 62-72
  • 76 Mineur YS, Picciotto MR. Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction.  Biochem Pharmacol. 2007;  75 323-333
  • 77 Musso F, Bettermann F, Vucurevic G, Stoeter P, Konrad A, Winterer G. Smoking impacts on prefrontal attention network function in young adult brains.  Psychopharmacology. 2007;  191 159-169
  • 78 Nakayama H, Numakawa T, Ikeuchi T, Hatanaka H. Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12 h cells.  J Neurochem. 2001;  79 489-498
  • 79 Ohno M, Yamamoto T, Watanabe S. Blockade of hippocampal nicotinic receptors impairs working memory but not reference memory in rats.  Pharmacol Biochem Behav. 1993;  45 89-93
  • 80 Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Boushcet T, Matthews P, Isaac JTR, Bortolotto ZA, Wang YT, Collingridge GL. LTP inhibits LTD in the hippocampus via regulation of GSK3ß.  Neuron. 2007;  53 703-717
  • 81 Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J. Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover.  Mol Pharmacol. 1994;  46 523-530
  • 82 Pidoplichko VI, DeBiasi M, Williams JT, Dani JA. Nicotine activates and desensitizes midbrain dopamine neurons.  Nature. 1997;  390 401-404
  • 83 Pomerleau OF, Downey KK, Stelson FW, Pomerleau CS. Cigarette smoking in adult patients diagnosed with attention deficit hyperactivity disorder.  J Subst Abuse. 1995;  7 373-378
  • 84 Rohleder N, Kirschbaum C. The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers.  Int J Psychphysiol. 2006;  59 236-243
  • 85 Raymond CR. LTP forms 1, 2 and 3: different mechanism for the “long” in long-term potentiation.  Trends in Neurosci. 2007;  30 167-175
  • 86 Rezvani K, Teng Y, Shim D, Biasi M De. Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity.  J Neurosci. 2007;  27 10508-10519
  • 87 Rezvani AH, Levin ED. Cognitive effects of nicotine.  Biol Psychiatry. 2001;  49 258-167
  • 88 Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.  Oncogene. 2007;  26 3291-3210
  • 89 Robinson SE, Vann RE, Britton AF, O’Connell MM, James JR, Rosecrans JA. Cellular nicotinic receptor desensitization correlates with nicotine-induced acute behavioural tolerance in rats.  Psychopharmacology. 2007;  192 71-78
  • 90 Sacco KA, Bannon KL, George TP. Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders.  J Psychopharmacol. 2004;  18 457-474
  • 91 Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado de Carvalho L, Changeux JP, Corringer PJ. Nicotine upregulates its own recep-tors through enhanced intracellular maturation.  Neuron. 2005;  46 595-607
  • 92 Schmitt JM, Guire ES, Saneyoshi T, Soderling TR. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.  J Neurosci. 2005;  25 1281-1290
  • 93 Sherwood N, Kerr JS, Hindmarch I. Psychomotor performance in smokers following single and repeated doses of nicotine gum.  Psychopharmacology (Berlin). 1992;  108 432-436
  • 94 Smith RC, Singh A, Infante M, Khandat A, Kloos A. Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia.  Neuropsychopharmacology. 2002;  27 479-497
  • 95 Staley JK, Krishnan-Sarin S, Kelly P, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O’Malley S, Dyck CH van. Human tobacco smokers in early abstinence have higher levels of ß2* nicotinic acetylcholine receptors than nonsmokers.  J Neurosci. 2006;  26 8707-8714
  • 96 Steiner RC, Heath CJ, Picciotto MR. Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signalling and CaMKII.  J Neurochem. 2007;  103 666-678
  • 97 Stolerman IP, Mirza NR, Hahn B, Shoaib M. Nicotine in an animal model of attention.  Eur J Pharmacol. 2000;  393 147-154
  • 98 Sugano T, Yanagita T, Yokoo H, Satoh S, Kobayashi H, Wada A. Enhancement of insulin-induced PI3K/Akt/GSK-3ß and ERK signalling by neuronal nicotinic receptor/ PKC-α/ERK pathway: upregulation of IRS-1/-2 mRNA and protein in adrenal chromaffin cells.  J Neurochem. 2006;  98 20-33
  • 99 Thiel CM, Zilles K, Fink GR. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.  Neuropsychopharmacology. 2005;  30 810-820
  • 100 Thorndike FP, Wernicke R, Pearlman MY, Haaga DAF. Nicotine dependence.  PTSD symptoms and depression proneness among male and female smokers Addict Behav. 2006;  31 223-231
  • 101 Tretter F, Albus M. “Computational neuropsychiatry” of working memory disorders in schizophrenia: the network connectivity in prefrontal cortex – data and models.  Pharmacopsychiatry. 2007;  40 ((Suppl 1)) 2-16
  • 102 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) 26-35
  • 103 Heide LP van der, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: Learning to survive.  Progress in Neurobiology. 2006;  79 205-221
  • 104 Wang Q, Liu L, Pei L, Ju W, Ahmadian G, Lu J, Wang Y, Liu F, Wang YT. Control of synaptic strength, a novel function of Akt.  Neuron. 2003;  38 915-928
  • 105 Weeber EJ, Sweatt JD. Molecular neurobiology of human cognition.  Neuron. 2002;  845-848
  • 106 Weinberger DR, Gallhofer B. Cognitive function in schizophrenia.  Int Clin Psychopharmacol. 1997;  12 ((Suppl 4)) 29-36
  • 107 Wesnes K, Warburton DM. Effects of smoking on rapid information processing performance.  Neuropsychobiology. 1983;  9 223-229
  • 108 Winterer G, Weinberger DR. Genes, dopamine and cortical signal to noise ratio in schizophrenia.  Trends Neurosci. 2004;  27 683-690
  • 109 Winterer G, Coppola R, Goldberg T, Egan M, Jones D, Sanchez CE, Weinberger DR. Prefrontal broadband noise, working memory and genetic risk for schizophrenia.  Am J Psychiatry. 2004;  161 490-500
  • 110 Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW, Callicot JH, Coppola R, Weinberger DR. Instability of prefrontal signal processing in schizophrenia.  Am J Psychiatry. 2006a;  163 1960-1968
  • 111 Winterer G, Egan MF, Kolachana BS, Goldberg TE, Coppola R, Weinberger DR. Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in schizophrenia.  Biol Psychiatry. 2006b;  60 578-584
  • 112 Winterer G. Cortical microcircuits in schizophrenia – the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006c;  39 ((Suppl 1)) 68-71
  • 113 Winterer G. Proefrontal dopamine signaling in schizophrenia – the corticocentric model.  Pharmacopsychiatry. 2007;  40 ((Suppl 1)) 45-53
  • 114 Wonnacott S, Sidhpura N, Balfour DJK. Nicotine: from molecular mechanisms to behaviour.  Current Opin Pharmacol. 2005;  5 53-59
  • 115 Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ, Weber J, Neiswender H, Dong XP, Wu J, Gassmann M, Lai C, Xiong WC, Gao TM, Mei L. Neuregulin-1 enhances depolarization-induced GABA release.  Neuron. 2007;  54 599-610
  • 116 Yoshii A, Constantine-Paton M. BNDF induces transport of PSD-95 to dendrites through PI3K-Akt signalling aftrer NMDA receptor activation.  Nature Neurosci. 2007;  10 702-711

Correspondence

Prof. Dr. G. Winterer

Department of Psychiatry

Heinrich-Heine-University

Bergische Landstr. 2

40629 Duesseldorf

Germany

Email: georg.winterer@uni-duesseldorf.de

    >