Semin Neurol 2000; 20(4): 487-498
DOI: 10.1055/s-2000-13182
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Functional Neuroimaging of Cognition

Mark D'Esposito
  • Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California
Further Information

Publication History

Publication Date:
03 March 2004 (online)

ABSTRACT

Neuroimaging has, in many respects, revolutionized the study of behavioral neurology and cognitive neuroscience. Early studies of brain-behavior relationships relied on a precise neurological examination as the basis for hypothesizing the site of brain damage that was responsible for a given behavioral syndrome. The advent of structural brain imaging, first with computed tomography (CT) and later with magnetic resonance imaging (MRI), paved the way for more precise anatomical localization of the cognitive deficits that are manifest after brain injury. In recent years, functional neuroimaging, broadly defined as techniques that provide measures of brain activity, has further increased our ability to study the neural basis of behavior. The modern era of functional brain imaging was introduced with the use of positron emission tomography (PET). In more recent years, functional magnetic resonance imaging (fMRI) has rapidly emerged as an extremely powerful technique with many advantages over PET for studying cognition. Thus, the principles underlying fMRI studies of cognition are the focus of this review.

REFERENCES

  • 1 Broca P. Remarques sur le siège de la faculté du langage articulé suivies d'une observation d'amphémie (perte de al parole).  Bull Mem Soc Anat Paris . 1861;  36
  • 2 Naeser M, Palumbo C, Helm-Estabrooks N. Severe nonfluency in aphasia: role of the medial subcallosal fasciculus plus other white matter pathways in recovery of spontaneous speech.  Brain . 1989;  112 1-38
  • 3 Dronkers N F. A new brain region for coordinating speech articulation.  Nature . 1996;  384 159-161
  • 4 Alexander M P, Naeser M A, Palumbo C. Broca's area aphasias: aphasia after lesions including the frontal operculum.  Neurology . 1990;  40 353-362
  • 5 Galin D, Ornstein R. Lateral specialization of cognitive mode: an EEG study.  Psychophysiology . 1972;  9 412-418
  • 6 Ingvar D H, Schwartz M S. Blood flow patterns induced in the dominant hemisphere by speech and reading.  Brain . 1974;  97 273-278
  • 7 Petersen S E, Fox P T, Posner M I, Mintun M, Raichle M E. Positron emission tomographic studies of the cortical anatomy of single word processing.  Nature . 1988;  331 585-589
  • 8 Mazziotta J C, Phelps M E. Human sensory stimulation and deprivation: positron emission tomographic results and strategies.  Ann Neurol . 1984;  15 S50-S60
  • 9 Sarter M, Bernston G, Cacioppo J. Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure.  Am Psychol . 1996;  51 13-21
  • 10 Jarrard L E. On the role of the hippocampus in learning and memory in the rat.  Behav Neural Biol . 1993;  60 9-26
  • 11 Feeney D M, Baron J C. Diaschisis.  Stroke . 1986;  17 817-830
  • 12 Funahashi S, Bruce C J, Goldman-Rakic P S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.  J Neurophysiol . 1989;  61 331-349
  • 13 Fuster J M, Alexander G E. Neuron activity related to short-term memory.  Science . 1971;  173 652-654
  • 14 Fuster J. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobes.  3rd ed. New York: Raven Press; 1997
  • 15 Funahashi S, Bruce C J, Goldman-Rakic P S. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic ``scotomas''.  J Neurosci . 1993;  13 1479-1497
  • 16 Cahusac P M, Miyashita Y, Rolls E T. Responses of hippocampal formation neurons in the monkey related to delayed spatial response and object-place memory tasks.  Behav Brain Res . 1989;  33 229-240
  • 17 Watanabe T, Niki H. Hippocampal unit activity and delayed response in the monkey.  Brain Res . 1985;  325 241-254
  • 18 Alvarez P, Zola-Morgan S, Squire L R. The animal model of human amnesia: long-term memory impaired and short- term memory intact.  Proc Natl Acad Sci USA . 1994;  91 5637-5641
  • 19 Corkin S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M  Semin Neurol . 1984;  4 249-259
  • 20 Cohen M S, Kosslyn S M, Breiter H C. Changes in cortical activity during mental rotation: a mapping study using functional MRI.  Brain . 1996;  119 89-100
  • 21 D'Esposito M, Ballard D, Aguirre G, Zarahn E. Human prefrontal cortex is not specific for working memory.  Neuroimage . 1998;  8 274-282
  • 22 Abduljalil A M, Robitaille P M. Macroscopic susceptibility in ultra high field MRI.  J Comput Assist Tomogr . 1999;  23 832-841
  • 23 Abduljalil A M, Kangarlu A, Yu Y, Robitaille P M. Macroscopic susceptibility in ultra high field MRI. II: acquisition of spin echo images from the human head.  J Comput Assist Tomogr . 1999;  23 842-44
  • 24 Hoffmann A, Faber S C, Werhahn K J, Jager L, Reiser M. Electromyography in MRI: first recordings of peripheral nerve activation caused by fast magnetic field gradients.  Magn Reson Med . 2000;  43 534-539
  • 25 Barch D M, Sabb F W, Carter C S, Braver T S, Noll D C, Cohen J D. Overt verbal responding during fMRI scanning: empirical investigations of problems and potential solutions.  Neuroimage . 1999;  10 642-657
  • 26 Edminster W B, Talavage T M, Ledden P J, Weisskoff R M. Improved auditory cortex imaging using clustered volume acquisitions.  Hum Brain Map . 1999;  7 88-97
  • 27 Belin P, Zatorre R J, Hoge R, Evans A C, Pike B. Event-related fMRI of the auditory cortex.  Neuroimage . 1999;  10 417-429
  • 28 Horowitz A L. MRI Physics for Radiologists.  3rd ed. New York: Springer-Verlag; 1995
  • 29 Leniger-Follert E, Hossmann K A. Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation.  Pflugers Arch . 1979;  380 85-89
  • 30 Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping.  Science . 1996;  272 551-554
  • 31 Kwong K K, Belliveau J W, Chesler D A. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.  Proc Natl Acad Sci USA . 1992;  89 5675-5679
  • 32 Ogawa S, Menon R S, Tank D W. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model.  Biophys J . 1993;  64 803-812
  • 33 Gnadt J W, Andersen R A. Memory related motor planning activity in posterior parietal cortex of macaque.  Exp Brain Res . 1988;  70 216-220
  • 34 Bandettini P A, Wong E C, Hinks R S, Tikofsky R S, Hyde J S. Time course of EPI of human brain function during task activation.  Magn Reson Med . 1992;  25 390-397
  • 35 Aguirre G K, Zarahn E, D'Esposito M. The variability of human, BOLD hemodynamic responses.  Neuroimage . 1998;  8 360-369
  • 36 Boynton G M, Engel S A, Glover G H, Heeger D J. Linear systems analysis of functional magnetic resonance imaging in human V1.  J Neurosci . 1996;  16 4207-4221
  • 37 Georgopoulos A P, Crutcher M D, Schwartz A B. Cognitive spatial-motor processes. 3. Motor cortical prediction of movement direction during an instructed delay period.  Exp Brain Res . 1989;  75 183-194
  • 38 Zarahn E, Aguirre G K, D'Esposito M. A trial-based experimental design for functional MRI.  Neuroimage . 1997;  6 122-138
  • 39 Burock M A, Buckner R L, Woldorff M G, Rosen B R, Dale A M. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI.  Neuroreport . 1998;  9 3735-3739
  • 40 Clark V P, Maisog J M, Haxby J V. fMRI studies of visual perception and recognition using a random stimulus design.  Soc Neurosci Abst . 1997;  23 301
  • 41 Dale A M, Buckner R L. Selective averaging of rapidly presented individual trials using fMRI.  Hum Brain Map . 1997;  5 1-12
  • 42 Kim S G, Richter W, Ugurbil K. Limitations of temporal resolution in fMRI.  Magn Reson Med . 1997;  37 631-636
  • 43 Savoy R L, Bandettini P A, O'Craven K M. Pushing the temporal resolution of fMRI: studies of very brief stimuli, onset of variability and asynchrony, and stimulu-correlated changes in noise.  Proc Soc Magn Reson Med . 1995;  3 450
  • 44 Posner M I, Petersen S E, Fox P T, Raichle M E. Localization of cognitive operations in the human brain.  Science . 1988;  240 1627-1631
  • 45 Sternberg S. The discovery of processing stages: extensions of Donders' method.  Acta Psychol . 1969;  30 276-315
  • 46 Jonides J, Smith E E, Koeppe R A, Awh E, Minoshima S, Mintun M A. Spatial working memory in humans as revealed by PET.  Nature . 1993;  363 623-625
  • 47 Vazquez A L, Noll D C. Nonlinear aspects of the BOLD response in functional MRI.  Neuroimage . 1998;  7 108-118
  • 48 Kapur S, Craik F IM, Jones C, Brown G M, Houle S, Tulving E. Functional role of the prefrontal cortex in retrieval of memories: a PET study.  Neuroreport . 1995;  6 1880-1884
  • 49 Rugg M D, Fletcher P C, Frith C D, Frackowiak R SJ, Dolan R J. Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval.  Brain . 1996;  119 2073-2083
  • 50 Johnson M K, Nolde S F, Mather M, Kounios J, Schacter D, Curran T. The similarity of brain activity associated with true and false recognition depends on test format.  Psychol Sci . 1997;  8 250-257
  • 51 Rosen B R, Buckner R L, Dale A M. Event-related functional MRI: past, present, and future.  Proc Natl Acad Sci USA . 1998;  95 773-780
  • 52 D'Esposito M, Zarahn E, Aguirre G K. Event-related fMRI: implications for cognitive psychology.  Psychol Bull . 1999;  125 155-164
  • 53 Zarahn E, Aguirre G K, D'Esposito M. Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI.  Cogn Brain Res . 1999;  7 255-268
  • 54 Keppel G, Zedeck S. Data Analysis for Research Design.  New York: WH Freeman; 1989
  • 55 Worsley K J, Friston K J. Analysis of fMRI time-series revisited-again.  Neuroimage . 1995;  2 173-182
  • 56 Zarahn E, Aguirre G K, D'Esposito M. Empirical analyses of BOLD fMRI statistics: I. Spatially unsmoothed data collected under null-hypothesis conditions.  Neuroimage . 1997;  5 179-197
  • 57 Aguirre G K, Zarahn E, D'Esposito M. Empirical analyses of BOLD fMRI statistics: II. Spatially smoothed data collected under null-hypothesis and experimental conditions.  Neuroimage . 1997;  5 199-212
  • 58 Aguirre G K, Zarahn E, D'Esposito M. The Kolmogorov-Smirnov (KS) statistic fails to control type I error in the analysis of bold fMRI data.  Magn Reson Med . 1998;  39 500-505
  • 59 D'Esposito M, Ballard D, Zarahn E, Aguirre G K. Related articles: the role of prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study.  Neuroimage . 2000;  11 400-408
  • 60 Van Horn D J, Ellmore T M, Esposito G, Berman K F. Mapping voxel-based statistical power on parametric images.  Neuroimage . 1998;  7 97-107
  • 61 Aguirre G K, D'Esposito M. Experimental design for brain fMRI. In: Moonen CTW, Bandettini PA, eds. Functional MRI Berlin: Springer Verlag 1999: 369-380
  • 62 Damasio A, Damasio H, Van Hoesen G. Prosopagnosia: anatomic basis and anatomical mechanisms.  Neurology . 1982;  32 331-341
  • 63 De Renzi E, Perani D, Carlesimo G A, Silveri M C, Fazio F. Prosopagnosia can be associated with damage confined to the right hemisphere: an MRI and PET study and a review of the literature.  Neuropsychologia . 1994;  32 893-902
  • 64 Kanwisher N, McDermott J, Chun M M. The fusiform face area: a module in human extrastriate cortex specialized for face perception.  J Neurosci . 1997;  17 4302-4311
  • 65 Rees G, Frith C D, Lavie N. Modulating irrelevant motion perception by varying attentional load in an unrelated task.  Science . 1997;  278 1616-1619
  • 66 Treisman A M. Strategies and models of selective attention.  Psychol Rev . 1969;  76 282-299
  • 67 Lavie N, Tsal Y. Perceptual load as a major determinant of the locus of selection in visual attention.  Percept Psychophys . 1994;  56 183-197
  • 68 Buchel C, Coull J T, Friston K J. The predictive value of changes in effective connectivity for human learning.  Science . 1999;  283 1538-1541
  • 69 McIntosh A R, Grady C L, Haxby J V, Ungerleider L G, Horwitz B. Changes in limbic and prefrontal functional interactions in a working memory task for faces.  Cereb Cortex . 1996;  6 571-584
  • 70 Gerstein G L, Perkel D H, Subramanian K N. Identification of functionally related neural assemblies.  Brain Res . 1978;  140 43-62
  • 71 McCarthy R A, Warrington E K. Disorders of semantic memory.  Philos Trans R Soc Lond B Biol Sci . 1994;  346 89-96
  • 72 Thompson-Schill S L, D'Esposito M, Aguirre G K, Farah M J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a re-evaluation.  Proc Natl Acad Sci USA . 1997;  94 14792-14797
  • 73 Thompson-Schill S L, Swick D, Farah M J, D'Esposito M, Kan I P, Knight R T. Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings.  Proc Natl Acad Sci USA. 1998;  95 15855-15860
    >