Facial Plast Surg 2024; 40(03): 268-274
DOI: 10.1055/s-0044-1779043
Original Article

Overview of Nasal Airway and Nasal Breathing Evaluation

1   Hospital Luz Arrabida, Porto, Portugal
› Author Affiliations

Abstract

Several methods are available for evaluating nasal breathing and nasal airflow, as this evaluation may be made from several different perspectives.

Physiologic methods for nasal airway evaluation directly measure nasal airflow or nasal airway resistance, while anatomical methods measure nasal airway dimensions. Subjective methods evaluate nasal breathing through several validated patient-reported scales assessing nasal breathing. Computational fluid dynamics evaluates nasal airflow through the analysis of several physics' variables of the nasal airway.

Being familiar to these methods is of utmost importance for the nasal surgeon to be able to understand data provided by the different methods and to be able to choose the combination of evaluation methods that will provide the information most relevant to each clinical situation.



Publication History

Article published online:
08 February 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 van Spronsen E, Ingels KJ, Jansen AH, Graamans K, Fokkens WJ. Evidence-based recommendations regarding the differential diagnosis and assessment of nasal congestion: using the new GRADE system. Allergy 2008; 63 (07) 820-833
  • 2 Lund VJ. Objective assessment of nasal obstruction. Otolaryngol Clin North Am 1989; 22 (02) 279-290
  • 3 Hsu HC, Tan CD, Chang CW. et al. Evaluation of nasal patency by visual analogue scale/nasal obstruction symptom evaluation questionnaires and anterior active rhinomanometry after septoplasty: a retrospective one-year follow-up cohort study. Clin Otolaryngol 2017; 42 (01) 53-59
  • 4 Yepes-Nuñez JJ, Bartra J, Muñoz-Cano R. et al. Assessment of nasal obstruction: correlation between subjective and objective techniques. Allergol Immunopathol (Madr) 2013; 41 (06) 397-401
  • 5 Spataro E, Most SP. Measuring nasal obstruction outcomes. Otolaryngol Clin North Am 2018; 51 (05) 883-895
  • 6 Cho SI, Hauser R, Christiani DC. Reproducibility of nasal peak inspiratory flow among healthy adults: assessment of epidemiologic utility. Chest 1997; 112 (06) 1547-1553
  • 7 Harar RP, Kalan A, Kenyon GS. Assessing the reproducibility of nasal spirometry parameters in the measurement of nasal patency. Rhinology 2001; 39 (04) 211-214
  • 8 Fairley JW, Durham LH, Ell SR. Correlation of subjective sensation of nasal patency with nasal inspiratory peak flow rate. Clin Otolaryngol Allied Sci 1993; 18 (01) 19-22
  • 9 Timperley D, Srubisky A, Stow N, Marcells GN, Harvey RJ. Minimal clinically important differences in nasal peak inspiratory flow. Rhinology 2011; 49 (01) 37-40
  • 10 Sakai RHUS, Marson FAL, Sakuma ETI, Ribeiro JD, Sakano E. Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Rev Bras Otorrinolaringol (Engl Ed) 2016; 84 (01) 40-50
  • 11 Kjaergaard T, Cvancarova M, Steinsvåg SK. Relation of nasal air flow to nasal cavity dimensions. Arch Otolaryngol Head Neck Surg 2009; 135 (06) 565-570
  • 12 Xavier R, Azeredo-Lopes S, Menger DJ, Cyrne de Carvalho H, Spratley J. Which nasal airway dimensions correlate with nasal airflow and with nasal breathing sensation?. Facial Plast Surg Aesthet Med 2021; DOI: 10.1089/fpsam.2021.0148.
  • 13 Cakmak O, Coşkun M, Celik H, Büyüklü F, Ozlüoğlu LN. Value of acoustic rhinometry for measuring nasal valve area. Laryngoscope 2003; 113 (02) 295-302
  • 14 Bakker NH, Lohuis PJ, Menger DJ, Nolst Trenité GJ, Fokkens WJ, Grimbergen CA. Objective computerized determination of the minimum cross-sectional area of the nasal passage on computed tomography. Laryngoscope 2005; 115 (10) 1809-1812
  • 15 Poetker DM, Rhee JS, Mocan BO, Michel MA. Computed tomography technique for evaluation of the nasal valve. Arch Facial Plast Surg 2004; 6 (04) 240-243
  • 16 Min YG, Jang YJ. Measurements of cross-sectional area of the nasal cavity by acoustic rhinometry and CT scanning. Laryngoscope 1995; 105 (7 Pt 1): 757-759
  • 17 Keeler J, Most SP. Measuring nasal obstruction. Facial Plast Surg Clin North Am 2016; 24 (03) 315-322
  • 18 Proimos EK, Kiagiadaki DE, Chimona TS, Seferlis FG, Maroudias NJ, Papadakis CE. Comparison of acoustic rhinometry and nasal inspiratory peak flow as objective tools for nasal obstruction assessment in patients with chronic rhinosinusitis. Rhinology 2015; 53 (01) 66-74
  • 19 Stewart MG, Witsell DL, Smith TL, Weaver EM, Yueh B, Hannley MT. Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol Head Neck Surg 2004; 130 (02) 157-163
  • 20 Fairley J, Yardley M, Durham L. Reliability and validity of a nasal symptom questionnaire for use as an outcome measure in clinical research and audit of functional endoscopic sinus surgery. Clin Otolaryngol 1993; 18: 436-437
  • 21 Hopkins C, Gillett S, Slack R, Lund VJ, Browne JP. Psychometric validity of the 22-item Sinonasal outcome test. Clin Otolaryngol 2009; 34 (05) 447-454
  • 22 Moubayed SP, Ioannidis JPA, Saltychev M, Most SP. The 10-item standardized cosmesis and health nasal outcomes survey (SCHNOS) for functional and cosmetic rhinoplasty. JAMA Facial Plast Surg 2018; 20 (01) 37-42
  • 23 Rhee JS, Sullivan CD, Frank DO, Kimbell JS, Garcia GJ. A systematic review of patient-reported nasal obstruction scores: defining normative and symptomatic ranges in surgical patients. JAMA Facial Plast Surg 2014; 16 (03) 219-225 , quiz 232
  • 24 Patki A, Frank-Ito DO. Characterizing human nasal airflow physiologic variables by nasal index. Respir Physiol Neurobiol 2016; 232: 66-74
  • 25 Tu J, Inthavong K, Ahmadi G. Computational Fluid and Particle Dynamics in the Human Respiratory System. Dordrecht: Springer Science & Business Media; 2013: 233-317
  • 26 Brüning JJ, Goubergrits L, Heppt W, Zachow S, Hildebrandt T. Numerical analysis of nasal breathing: a pilot study. Facial Plast Surg 2017; 33 (04) 388-395
  • 27 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol 2006; 100 (03) 1003-1010
  • 28 Inthavong K, Shang Y, Tu J. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir Physiol Neurobiol 2014; 190: 54-61
  • 29 Radulesco T, Meister L, Bouchet G. et al. Functional relevance of computational fluid dynamics in the field of nasal obstruction: a literature review. Clin Otolaryngol 2019; 44 (05) 801-809
  • 30 Zhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 2011; 6 (10) e24618
  • 31 Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol 2014; 4 (06) 435-446
  • 32 Even-Tzur N, Kloog Y, Wolf M, Elad D. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 2008; 95 (06) 2998-3008
  • 33 Kimbell JS, Frank DO, Laud P, Garcia GJ, Rhee JS. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J Biomech 2013; 46 (15) 2634-2643
  • 34 Sozansky J, Houser SM. The physiological mechanism for sensing nasal airflow: a literature review. Int Forum Allergy Rhinol 2014; 4 (10) 834-838
  • 35 Sullivan CD, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol Head Neck Surg 2014; 150 (01) 139-147
  • 36 André RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenité GJ. Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 2009; 34 (06) 518-525
  • 37 Barnes ML, White PS, Gardiner Q. Re: Correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 2010; 35 (02) 152-153 , author reply 153
  • 38 Eccles R, Doddi NM, Leong S. Re: Correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 2010; 35 (02) 149 , author reply 150
  • 39 Schumacher MJ, Pain MC. Nasal challenge testing in grass pollen hay fever. J Allergy Clin Immunol 1979; 64 (03) 202-208
  • 40 Sipilä J, Suonpää J, Silvoniemi P, Laippala P. Correlations between subjective sensation of nasal patency and rhinomanometry in both unilateral and total nasal assessment. ORL J Otorhinolaryngol Relat Spec 1995; 57 (05) 260-263
  • 41 Pastorello EA, Riario-Sforza GG, Incorvaia C, Segala M, Fumagalli M, Gandini R. Comparison of rhinomanometry, symptom score, and inflammatory cell counts in assessing the nasal late-phase reaction to allergen challenge. J Allergy Clin Immunol 1994; 93 (1 Pt 1): 85-92
  • 42 Welch MJ, Meltzer EO, Orgel HA, Kemp JP. Assessment of the correlation of rhinometry with the symptoms and signs of allergic rhinitis in children. Ann Allergy 1985; 55 (04) 577-579
  • 43 Vogt K, Jalowayski A, Althaus W. et al. 4-Phase-rhinomanometry - basics and practice 2010. Rhinol Suppl 2010; 21: 1-50
  • 44 Naito K, Kondo Y, Ohoka E, Komori M, Takeuchi M, Iwata S. New aerodynamic aspects of nasal patency. Rhinology 1995; 33 (01) 26-29
  • 45 Kumlien J, Schiratzki H. Methodological aspects of rhinomanometry. Rhinology 1979; 17 (02) 107-114
  • 46 Hirschberg A, Rezek O. Correlation between objective and subjective assessments of nasal patency. ORL J Otorhinolaryngol Relat Spec 1998; 60 (04) 206-211
  • 47 Watson WT, Roberts JR, Becker AB, Gendreau-Reid LF, Simons FE. Nasal patency in children with allergic rhinitis: correlation of objective and subjective assessments. Ann Allergy Asthma Immunol 1995; 74 (03) 237-240
  • 48 Xavier R, Azeredo-Lopes S, Menger DJ, de Carvalho HC, Spratley J. Objective measurement and patient-reported evaluation of the nasal airway: is correlation dependent on symptoms or on nasal airflow?. Clin Otolaryngol 2021; 46 (04) 744-751
  • 49 Eccles R, Jones AS. The effect of menthol on nasal resistance to air flow. J Laryngol Otol 1983; 97 (08) 705-709
  • 50 Willatt DJ, Jones AS. The role of the temperature of the nasal lining in the sensation of nasal patency. Clin Otolaryngol Allied Sci 1996; 21 (06) 519-523
  • 51 Zhao K, Jiang J, Blacker K. et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
  • 52 Liu SC, Lu HH, Fan HC. et al. The identification of the TRPM8 channel on primary culture of human nasal epithelial cells and its response to cooling. Medicine (Baltimore) 2017; 96 (31) e7640
  • 53 Bailey RS, Casey KP, Pawar SS, Garcia GJ. Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast Surg 2017; 19 (01) 46-52
  • 54 Voets T, Owsianik G, Nilius B. Trpm8. Handb Exp Pharmacol 2007; 179 (179) 329-344
  • 55 Bautista DM, Siemens J, Glazer JM. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007; 448 (7150) 204-208
  • 56 Tsubone H. Nasal ‘flow’ receptors of the rat. Respir Physiol 1989; 75 (01) 51-64
  • 57 Jones AS, Wight RG, Durham LH. The distribution of thermoreceptors within the nasal cavity. Clin Otolaryngol Allied Sci 1989; 14 (03) 235-239
  • 58 Jones AS, Wight RG, Crosher R, Durham LH. Nasal sensation of airflow following blockade of the nasal trigeminal afferents. Clin Otolaryngol Allied Sci 1989; 14 (04) 285-289
  • 59 Cauna N, Hinderer KH, Wentges RT. Sensory receptor organs of the human nasal respiratory mucosa. Am J Anat 1969; 124 (02) 187-209
  • 60 Andrews PJ, Choudhury N, Takhar A, Poirrier AL, Jacques T, Randhawa PS. The need for an objective measure in septorhinoplasty surgery: are we any closer to finding an answer?. Clin Otolaryngol 2015; 40 (06) 698-703
  • 61 Fuller JC, Bernstein CH, Levesque PA, Lindsay RW. Peak nasal inspiratory flow as an objective measure of nasal obstruction and functional septorhinoplasty outcomes. JAMA Facial Plast Surg 2018; 20 (02) 175-176
  • 62 Fuller JC, Gadkaree SK, Levesque PA, Lindsay RW. Peak nasal inspiratory flow is a useful measure of nasal airflow in functional septorhinoplasty. Laryngoscope 2019; 129 (03) 594-601
  • 63 Lodder WL, Leong SC. What are the clinically important outcome measures in the surgical management of nasal obstruction?. Clin Otolaryngol 2018; 43 (02) 567-571
  • 64 Whitcroft KL, Andrews PJ, Randhawa PS. Peak nasal inspiratory flow correlates with quality of life in functional endoscopic sinus surgery. Clin Otolaryngol 2017; 42 (06) 1187-1192
  • 65 Lindemann J, Keck T, Scheithauer MO, Leiacker R, Wiesmiller K. Nasal mucosal temperature in relation to nasal airflow as measured by rhinomanometry. Am J Rhinol 2007; 21 (01) 46-49
  • 66 Frank DO, Zanation AM, Dhandha VH. et al. Quantification of airflow into the maxillary sinuses before and after functional endoscopic sinus surgery. Int Forum Allergy Rhinol 2013; 3 (10) 834-840
  • 67 Xavier R, Menger DJ, de Carvalho HC, Spratley J. An overview of computational fluid dynamics preoperative analysis of the nasal airway. Facial Plast Surg 2021; 37 (03) 306-316