Journal of Pediatric Neurology 2017; 15(03): 134-142
DOI: 10.1055/s-0037-1602823
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Drug Treatments for Core Symptoms of Autism Spectrum Disorder: Unmet Needs and Future Directions

Luigi Mazzone
1   Department of Neurosciences, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
2   Department of Neuroscience, I.R.C.C.S. Children's Hospital Bambino Gesù, Rome, Italy
,
Giulia Giovagnoli
3   Scientific Psychiatric Center Aita, Rome, Italy
,
Martina Siracusano
1   Department of Neurosciences, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
,
Valentina Postorino
4   Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
5   Marcus Autism Center, Atlanta, Georgia, United States
,
Paolo Curatolo
1   Department of Neurosciences, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
› Author Affiliations
Further Information

Publication History

20 February 2017

15 March 2017

Publication Date:
05 May 2017 (online)

Abstract

Pharmacological treatments for core symptoms of Autism Spectrum Disorder (ASD) are still lacking. The clinical heterogeneity observed in this population (e.g., differences in cognitive functioning or in autism symptom severity) should be taken into account when a new drug is tested. Stratifying this population according to its neurobiological substrate could significantly improve our knowledge regarding the most appropriate pharmacological treatment for individual needs. In this review, we discuss the possible genetic and biological pathways, including the Glutamatergic, GABAergic, and mTOR systems, involved in the pathophysiology of autism, as well as the mechanisms that may be targeted by new drug interventions. Finally, we describe the current progress from the preclinical and clinical studies on some potential therapeutic options for ASD core symptoms.

 
  • References

  • 1 American Psychiatric Association. Report of DSM-5 Proposed Criteria for Autism Spectrum Disorder. American Psychiatric Association 2013
  • 2 Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014; 63: 1-21
  • 3 Wing L, Potter D. The epidemiology of autistic spectrum disorders: is the prevalence rising?. Ment Retard Dev Disabil Res Rev 2002; 8 (03) 151-161
  • 4 Persico AM, Arango C, Buitelaar JK. , et al; European Child and Adolescent Clinical Psychopharmacology Network. Unmet needs in paediatric psychopharmacology: present scenario and future perspectives. Eur Neuropsychopharmacol 2015; 25 (10) 1513-1531
  • 5 Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 2008; 47 (08) 921-929
  • 6 Benvenuto A, Battan B, Porfirio MC, Curatolo P. Pharmacotherapy of autism spectrum disorders. Brain Dev 2013; 35 (02) 119-127
  • 7 Jobski K, Höfer J, Hoffmann F, Bachmann C. Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand 2017; 135 (01) 8-28
  • 8 Mazzone L, Ruta L, Reale L. Psychiatric comorbidities in asperger syndrome and high functioning autism: diagnostic challenges. Ann Gen Psychiatry 2012; 11 (01) 16 . Doi: 10.1186/1744-859X-11-16
  • 9 Masi A, De Mayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull 2017 . Doi: 10.1007/s12264-017-0100-y
  • 10 Scahill L, Aman MG, McDougle CJ. , et al. Trial design challenges when combining medication and parent training in children with pervasive developmental disorders. J Autism Dev Disord 2009; 39 (05) 720-729
  • 11 McDougle CJ, Scahill L, McCracken JT. , et al. Research units on pediatric psychopharmacology (RUPP) autism network. Background and rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am 2000; 9 (01) 201-224
  • 12 Dove D, Warren Z, McPheeters ML, Taylor JL, Sathe NA, Veenstra-VanderWeele J. Medications for adolescents and young adults with autism spectrum disorders: a systematic review. Pediatrics 2012; 130 (04) 717-726
  • 13 Food and Drug Administration (FDA). FDA approves the first drug to treat irritability associated with autism, risperdal. 2006 . Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2006/ucm108759.htm. Accessed February 26, 2016
  • 14 Bristol-Myers Squibb. U.S. ood and drug administration approves ABILIFY® (aripiprazole) for the treatment of irritability associated with autistic disorder in pediatric patients (Ages 6 to 17 Years). Available at: http://news.bms.com/press-release/rd-news/us-food-and-drug-administration-approves-abilify-aripiprazole-treatment-irrita . Accessed April 19, 2016
  • 15 Kuroki T, Nagao N, Nakahara T. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. Prog Brain Res 2008; 172: 199-212
  • 16 Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci 2016; 19 (11) 1397-1407
  • 17 Vorstman JA, Ophoff RA. Genetic causes of developmental disorders. Curr Opin Neurol 2013; 26 (02) 128-136
  • 18 Chahrour M, O'Roak BJ, Santini E, Samaco RC, Kleiman RJ, Manzini MC. Current perspectives in autism spectrum disorder: from genes to therapy. J Neurosci 2016; 36 (45) 11402-11410
  • 19 Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 2017; 18 (03) 147-157
  • 20 Durand CM, Perroy J, Loll F. , et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 2012; 17 (01) 71-84
  • 21 Mei Y, Monteiro P, Zhou Y. , et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 2016; 530 (7591): 481-484
  • 22 Yang M, Bozdagi O, Scattoni ML. , et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012; 32 (19) 6525-6541
  • 23 Pizzarelli R, Cherubini E. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011; 2011: 297153 . Doi: 10.1155/2011/297153
  • 24 Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (03) 174-186
  • 25 Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 2012; 36 (09) 2044-2055
  • 26 Port RG, Gaetz W, Bloy L. , et al. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD. Autism Res 2016 . Doi: 10.1002/aur.1686
  • 27 Fatemi SH, Reutiman TJ, Folsom TD, Rustan OG, Rooney RJ, Thuras PD. Downregulation of GABAA receptor protein subunits α6, β2, δ, ε, γ2, θ, and ρ2 in superior frontal cortex of subjects with autism. J Autism Dev Disord 2014; 44 (08) 1833-1845
  • 28 Brooks-Kayal A. Epilepsy and autism spectrum disorders: are there common developmental mechanisms?. Brain Dev 2010; 32 (09) 731-738
  • 29 Buckley AW, Holmes GL. Epilepsy and autism. Cold Spring Harb Perspect Med 2016; 6 (04) a022749 . Doi: 10.1101/cshperspect.a022749
  • 30 Persico M, Di Dato A, Orteca N, Cimino P, Novellino E, Fattorusso C. Use of integrated computational approaches in the search for new therapeutic agents. Mol Inform 2016; 35 (8-9): 309-325
  • 31 Jacquemont S, Berry-Kravis E, Hagerman R. , et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology (Berl) 2014; 231 (06) 1237-1250
  • 32 Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci 2011; 15 (09) 409-416
  • 33 Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 2015; 14 (07) 733-745
  • 34 Zhou J, Parada LF. PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol 2012; 22 (05) 873-879
  • 35 Walsh KS, Vélez JI, Kardel PG. , et al. Symptomatology of autism spectrum disorder in a population with neurofibromatosis type 1. Dev Med Child Neurol 2013; 55 (02) 131-138
  • 36 Ehninger D. From genes to cognition in tuberous sclerosis: implications for mTOR inhibitor-based treatment approaches. Neuropharmacology 2013; 68: 97-105
  • 37 Auerbach BD, Osterweil EK, Bear MF. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 2011; 480 (7375): 63-68
  • 38 Wenger TL, Kao C, McDonald-McGinn DM. , et al. The role of mGluR copy number variation in genetic and environmental forms of syndromic autism spectrum disorder. Sci Rep 2016; 6: 19372 . Doi: 10.1038/srep19372
  • 39 Ehninger D, Han S, Shilyansky C. , et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med 2008; 14 (08) 843-848
  • 40 Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 2003; 23 (02) 622-631
  • 41 Curatolo P, Napolioni V, Moavero R. Autism spectrum disorders in tuberous sclerosis: pathogenetic pathways and implications for treatment. J Child Neurol 2010; 25 (07) 873-880
  • 42 Lozano R, Azarang A, Wilaisakditipakorn T, Hagerman RJ. Fragile X syndrome: a review of clinical management. Intractable Rare Dis Res 2016; 5 (03) 145-157
  • 43 Bagni C, Oostra BA. Fragile X syndrome: from protein function to therapy. Am J Med Genet A 2013; 161A (11) 2809-2821
  • 44 Bardoni B, Capovilla M, Lalli E. Modeling Fragile X syndrome in neurogenesis: an unexpected phenotype and a novel tool for future therapies. Neurogenesis (Austin) 2017; 4 (01) e1270384 . Doi: 10.1080/23262133.2016.1270384
  • 45 Guo W, Polich ED, Su J. , et al. Fragile X Proteins FMRP and FXR2P control synaptic GluA1 expression and neuronal maturation via distinct mechanisms. Cell Reports 2015; 11 (10) 1651-1666
  • 46 Sato A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol Disord Drug Targets 2016; 15 (05) 533-543
  • 47 Bernardet M, Crusio WE. Fmr1 KO mice as a possible model of autistic features. Sci World J 2006; 6: 1164-1176
  • 48 Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 2002; 99 (11) 7746-7750
  • 49 Canitano R. New experimental treatments for core social domain in autism spectrum disorders. Front Pediatr 2014; 2: 61 . Doi: 10.3389/fped.2014.00061
  • 50 Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res Bull 2011; 86 (3-4): 152-158
  • 51 Silverman JL, Pride MC, Hayes JE. , et al. GABAB receptor agonist R-Baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology 2015; 40 (09) 2228-2239
  • 52 Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN. Ampakine enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 2013; 64: 268-282
  • 53 Veenstra-VanderWeele J, Cook EH, King BH. , et al. Arbaclofen in children and adolescents with autism spectrum disorder: A randomized, controlled, phase 2 trial. Neuropsychopharmacology 2016 . Doi: 10.1038/npp.2016.237
  • 54 Hollander E, Uzunova G. Are there new advances in the pharmacotherapy of autism spectrum disorders?. World Psychiatry 2017; 16 (01) 101-102
  • 55 Hosenbocus S, Chahal R. Memantine: a review of possible uses in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry 2013; 22 (02) 166-171
  • 56 Ghaleiha A, Asadabadi M, Mohammadi MR. , et al. Memantine as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Int J Neuropsychopharmacol 2013; 16 (04) 783-789
  • 57 Nikvarz N, Alaghband-Rad J, Tehrani-Doost M, Alimadadi A, Ghaeli P. Comparing efficacy and side effects of memantine vs. risperidone in the treatment of autistic disorder. Pharmacopsychiatry 2017; 50 (01) 19-25
  • 58 Aman MG, Findling RL, Hardan AY. , et al. Safety and efficacy of memantine in children with autism: randomized, placebo-controlled study and open-label extension. J Child Adolesc Psychopharmacol 2016 . Doi: 10.1089/cap.2015.0146
  • 59 Cheh MA, Millonig JH, Roselli LM. , et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 2006; 1116 (01) 166-176
  • 60 Benayed R, Choi J, Matteson PG. , et al. Autism-associated haplotype affects the regulation of the homeobox gene, ENGRAILED 2. Biol Psychiatry 2009; 66 (10) 911-917
  • 61 Provenzano G, Clementi E, Genovesi S. , et al. GH dysfunction in Engrailed-2 knockout mice, a model for autism spectrum disorders. Front Pediatr 2014; 2: 92 . Doi: 10.3389/fped.2014.00092
  • 62 Berry-Kravis EM, Hessl D, Rathmell B. , et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med 2012; 4 (152) 152ra127 . Doi: 10.1126/scitranslmed.3004214
  • 63 Erickson CA, Veenstra-Vanderweele JM, Melmed RD. , et al. STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study. J Autism Dev Disord 2014; 44 (04) 958-964
  • 64 Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev 2009; 31 (02) 104-113
  • 65 Kilincaslan A, Kok BE, Tekturk P, Yalcinkaya C, Ozkara C, Yapici Z. Beneficial effects of everolimus on autism and attention-deficit/hyperactivity disorder symptoms in a group of patients with tuberous sclerosis complex. J Child Adolesc Psychopharmacol 2016 . Doi: 10.1089/cap.2016.0100
  • 66 Franz DN, Belousova E, Sparagana S. , et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013; 381 (9861): 125-132
  • 67 Bissler JJ, Kingswood JC, Radzikowska E. , et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2013; 381 (9869): 817-824
  • 68 French JA, Lawson JA, Yapici Z. , et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016; 388 (10056): 2153-2163
  • 69 Talos DM, Sun H, Zhou X. , et al. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway. PLoS One 2012; 7 (05) e35885 . Doi: 10.1371/journal.pone.0035885
  • 70 Guastella AJ, Gray KM, Rinehart NJ. , et al. The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry 2015; 56 (04) 444-452
  • 71 Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry 2016; 21 (09) 1225-1231
  • 72 Bethlehem RAI, Baron-Cohen S, van Honk J, Auyeung B, Bos PA. The oxytocin paradox. Front Behav Neurosci 2014; 8: 48 . Doi: 10.3389/fnbeh.2014.00048
  • 73 Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 2009; 30 (04) 534-547
  • 74 Bethlehem RA, van Honk J, Auyeung B, Baron-Cohen S. Oxytocin, brain physiology, and functional connectivity: a review of intranasal oxytocin fMRI studies. Psychoneuroendocrinology 2013; 38 (07) 962-974
  • 75 Dadds MR, MacDonald E, Cauchi A, Williams K, Levy F, Brennan J. Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. J Autism Dev Disord 2014; 44 (03) 521-531
  • 76 Husarova VM, Lakatosova S, Pivovarciova A. , et al. Plasma oxytocin in children with autism and its correlations with behavioral parameters in children and parents. Psychiatry Investig 2016; 13 (02) 174-183
  • 77 Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol Autism 2014; 5 (01) 48 . Doi: 10.1186/2040-2392-5-48
  • 78 Watanabe T, Otowa T, Abe O. , et al. Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism. Soc Cogn Affect Neurosci 2017; 12 (03) 496-506
  • 79 Guastella AJ, Einfeld SL, Gray KM. , et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 2010; 67 (07) 692-694
  • 80 Anagnostou E, Soorya L, Chaplin W. , et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism 2012; 3 (01) 16 . Doi: 10.1186/2040-2392-3-16
  • 81 Domes G, Kumbier E, Heinrichs M, Herpertz SC. Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with asperger syndrome. Neuropsychopharmacology 2014; 39 (03) 698-706
  • 82 Du L, Shan L, Wang B. , et al. A pilot study on the combination of applied behavior analysis and bumetanide treatment for children with autism. J Child Adolesc Psychopharmacol 2015; 25 (07) 585-588
  • 83 Tyzio R, Nardou R, Ferrari DC. , et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014; 343 (6171): 675-679
  • 84 Lemonnier E, Ben-Ari Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatr 2010; 99 (12) 1885-1888
  • 85 Lemonnier E, Degrez C, Phelep M. , et al. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012; 2: e202 . Doi: 10.1038/tp.2012.124
  • 86 Steenweg-de Graaff J, Ghassabian A, Jaddoe VW, Tiemeier H, Roza SJ. Folate concentrations during pregnancy and autistic traits in the offspring. The generation R study. Eur J Public Health 2015; 25 (03) 431-433
  • 87 Shoffner J, Trommer B, Thurm A. , et al. CSF concentrations of 5-methyltetrahydrofolate in a cohort of young children with autism. Neurology 2016; 86 (24) 2258-2263
  • 88 Frye RE, Slattery J, Delhey L. , et al. Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial. Mol Psychiatry 2016; 00: 1-10