Semin Respir Crit Care Med 2013; 34(03): 405-413
DOI: 10.1055/s-0033-1348465
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immunosuppression: What's Standard and What's New?

Chad A. Witt
1   Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
,
Ramsey R. Hachem
1   Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
02 July 2013 (online)

Abstract

Lung transplantation is the ultimate treatment option for patients with end-stage lung disease. Chronic rejection, in the form of bronchiolitis obliterans syndrome, and noncytomegalovirus infections are the major causes of morbidity and mortality beyond the first year after transplantation. Most lung transplant recipients are treated lifelong with a three-drug immunosuppression regimen consisting of a calcineurin inhibitor, an antimetabolite, and low-dose corticosteroids. However, induction and maintenance immunosuppression strategies vary widely between centers, and a consensus on the ideal management of this patient population remains elusive. Over the past 20 years, several studies comparing the calcineurin inhibitors cyclosporine and tacrolimus and other studies comparing the antimetabolites azathioprine and mycophenolate mofetil have been performed. Additionally, the role of mammalian target of rapamycin (mTOR) inhibitors in the treatment of lung transplant recipients and the utility of azithromycin to treat and prevent bronchiolitis obliterans syndrome are areas of active investigation. This review discusses induction and traditional maintenance immunosuppressive agents and regimens and the evidence that exists to help guide therapy. Newer research involving the use of mTOR inhibitors in place of calcineurin inhibitors or antimetabolites and azithromycin for the treatment and prevention of bronchiolitis obliterans syndrome is also explored.

 
  • References

  • 1 Dalton ML. The first lung transplant. Am Surg 2004; 70 (4) 364-365
  • 2 Hardy JD. The first lung transplant in man (1963) and the first heart transplant in man (1964). Transplant Proc 1999; 31 (1-2) 25-29
  • 3 Date H. Current status and future of lung transplantation. Intern Med 2001; 40 (2) 87-95
  • 4 Borel JF, Feurer C, Gubler HU, Stähelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 1976; 6 (4) 468-475
  • 5 Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs 2007; 67 (11) 1531-1539
  • 6 Bhorade SM, Stern E. Immunosuppression for lung transplantation. Proc Am Thorac Soc 2009; 6 (1) 47-53
  • 7 Cooper JD, Pearson FG, Patterson GA , et al. Technique of successful lung transplantation in humans. J Thorac Cardiovasc Surg 1987; 93 (2) 173-181
  • 8 Christie JD, Edwards LB, Kucheryavaya AY , et al; International Society of Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant 2012; 31 (10) 1073-1086
  • 9 Korom S, Boehler A, Weder W. Immunosuppressive therapy in lung transplantation: state of the art. Eur J Cardiothorac Surg 2009; 35 (6) 1045-1055
  • 10 Caillat-Zucman S, Blumenfeld N, Legendre C , et al. The OKT3 immunosuppressive effect. In situ antigenic modulation of human graft-infiltrating T cells. Transplantation 1990; 49 (1) 156-160
  • 11 Perico N, Remuzzi G. Prevention of transplant rejection: current treatment guidelines and future developments. Drugs 1997; 54 (4) 533-570
  • 12 Bourdage JS, Hamlin DM. Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-CD antigen analysis by flow cytometry. Transplantation 1995; 59 (8) 1194-1200
  • 13 Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J 2004; 23 (1) 159-171
  • 14 Gaber AO, Monaco AP, Russell JA, Lebranchu Y, Mohty M. Rabbit antithymocyte globulin (thymoglobulin): 25 years and new frontiers in solid organ transplantation and haematology. Drugs 2010; 70 (6) 691-732
  • 15 Boothpur R, Hardinger KL, Skelton RM , et al. Serum sickness after treatment with rabbit antithymocyte globulin in kidney transplant recipients with previous rabbit exposure. Am J Kidney Dis 2010; 55 (1) 141-143
  • 16 Onrust SV, Wiseman LR. Basiliximab. Drugs 1999; 57 (2) 207-213 , discussion 214
  • 17 Wiseman LR, Faulds D. Daclizumab: a review of its use in the prevention of acute rejection in renal transplant recipients. Drugs 1999; 58 (6) 1029-1042
  • 18 Hengster P, Pescovitz MD, Hyatt D, Margreiter R. Roche Study Group. Cytomegalovirus infections after treatment with daclizumab, an anti IL-2 receptor antibody, for prevention of renal allograft rejection. Transplantation 1999; 68 (2) 310-313
  • 19 Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 1997; 350 (9086) 1193-1198
  • 20 Xia MQ, Tone M, Packman L, Hale G, Waldmann H. Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur J Immunol 1991; 21 (7) 1677-1684
  • 21 Xia MQ, Hale G, Lifely MR , et al. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J 1993; 293 (Pt 3) 633-640
  • 22 Weaver TA, Kirk AD. Alemtuzumab. Transplantation 2007; 84 (12) 1545-1547
  • 23 McCurry KR, Iacono A, Zeevi A , et al. Early outcomes in human lung transplantation with thymoglobulin or Campath-1H for recipient pretreatment followed by posttransplant tacrolimus near-monotherapy. J Thorac Cardiovasc Surg 2005; 130 (2) 528-537
  • 24 Trulock EP. Lung transplantation. Am J Respir Crit Care Med 1997; 155 (3) 789-818
  • 25 Cai J, Terasaki PI. Induction immunosuppression improves long-term graft and patient outcome in organ transplantation: an analysis of United Network for Organ Sharing registry data. Transplantation 2010; 90 (12) 1511-1515
  • 26 Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF. Rabbit antithymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest 1999; 116 (1) 127-133
  • 27 Hartwig MG, Snyder LD, Appel III JZ , et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant 2008; 27 (5) 547-553
  • 28 Hachem RR, Edwards LB, Yusen RD, Chakinala MM, Alexander Patterson G, Trulock EP. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transplant 2008; 22 (5) 603-608
  • 29 Jaksch P, Wiedemann D, Augustin V , et al. Antithymocyte globulin induction therapy improves survival in lung transplantation for cystic fibrosis. Transpl Int 2013; 26 (1) 34-41
  • 30 Hachem RR, Chakinala MM, Yusen RD , et al. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation. J Heart Lung Transplant 2005; 24 (9) 1320-1326
  • 31 Brock MV, Borja MC, Ferber L , et al. Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant 2001; 20 (12) 1282-1290
  • 32 Ailawadi G, Smith PW, Oka T , et al. Effects of induction immunosuppression regimen on acute rejection, bronchiolitis obliterans, and survival after lung transplantation. J Thorac Cardiovasc Surg 2008; 135 (3) 594-602
  • 33 Clinckart F, Bulpa P, Jamart J, Eucher P, Delaunois L, Evrard P. Basiliximab as an alternative to antithymocyte globulin for early immunosuppression in lung transplantation. Transplant Proc 2009; 41 (2) 607-609
  • 34 Shyu S, Dew MA, Pilewski JM , et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant 2011; 30 (7) 743-754
  • 35 Parekh K, Trulock E, Patterson GA. Use of cyclosporine in lung transplantation. Transplant Proc 2004; 36 (2, Suppl): 318S-322S
  • 36 Kahan BD. Cyclosporine. N Engl J Med 1989; 321 (25) 1725-1738
  • 37 Wiederrecht G, Lam E, Hung S, Martin M, Sigal N. The mechanism of action of FK-506 and cyclosporin A. Ann N Y Acad Sci 1993; 696: 9-19
  • 38 Tedesco D, Haragsim L. Cyclosporine: a review. J Transplant 2012; 2012: 230386
  • 39 Burdmann EA, Andoh TF, Yu L, Bennett WM. Cyclosporine nephrotoxicity. Semin Nephrol 2003; 23 (5) 465-476
  • 40 Ekberg H, Tedesco-Silva H, Demirbas A , et al; ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007; 357 (25) 2562-2575
  • 41 Curtis JJ. Hypertensinogenic mechanism of the calcineurin inhibitors. Curr Hypertens Rep 2002; 4 (5) 377-380
  • 42 Bechstein WO. Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl Int 2000; 13 (5) 313-326
  • 43 Jaksch P, Kocher A, Neuhauser P , et al. Monitoring C2 level predicts exposure in maintenance lung transplant patients receiving the microemulsion formulation of cyclosporine (Neoral). J Heart Lung Transplant 2005; 24 (8) 1076-1080
  • 44 Iversen M, Nilsson F, Sipponen J , et al. Cyclosporine C2 levels have impact on incidence of rejection in de novo lung but not heart transplant recipients: the NOCTURNE study. J Heart Lung Transplant 2009; 28 (9) 919-926
  • 45 Sawada S, Suzuki G, Kawase Y, Takaku F. Novel immunosuppressive agent, FK506. In vitro effects on the cloned T cell activation. J Immunol 1987; 139 (6) 1797-1803
  • 46 Peters DH, Fitton A, Plosker GL, Faulds D. Tacrolimus: a review of its pharmacology, and therapeutic potential in hepatic and renal transplantation. Drugs 1993; 46 (4) 746-794
  • 47 Taylor JL, Palmer SM. Critical care perspective on immunotherapy in lung transplantation. J Intensive Care Med 2006; 21 (6) 327-344
  • 48 Horning NR, Lynch JP, Sundaresan SR, Patterson GA, Trulock EP. Tacrolimus therapy for persistent or recurrent acute rejection after lung transplantation. J Heart Lung Transplant 1998; 17 (8) 761-767
  • 49 Hachem RR, Yusen RD, Chakinala MM , et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant 2007; 26 (10) 1012-1018
  • 50 Keenan RJ, Konishi H, Kawai A , et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg 1995; 60 (3) 580-584 , discussion 584–585
  • 51 Fan Y, Xiao YB, Weng YG. Tacrolimus versus cyclosporine for adult lung transplant recipients: a meta-analysis. Transplant Proc 2009; 41 (5) 1821-1824
  • 52 Zuckermann A, Reichenspurner H, Birsan T , et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg 2003; 125 (4) 891-900
  • 53 Treede H, Glanville AR, Klepetko W , et al; European and Australian Investigators in Lung Transplantation. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant 2012; 31 (8) 797-804
  • 54 Bush EL, Lin SS. Lung transplantation: advances in immunosuppression. Thorac Surg Clin 2006; 16 (4) 421-433
  • 55 Shapiro R, Young JB, Milford EL, Trotter JF, Bustami RT, Leichtman AB. Immunosuppression: evolution in practice and trends, 1993-2003. Am J Transplant 2005; 5 (4 Pt 2) 874-886
  • 56 Orens JB, Shearon TH, Freudenberger RS, Conte JV, Bhorade SM, Ardehali A. Thoracic organ transplantation in the United States, 1995-2004. Am J Transplant 2006; 6 (5, Pt 2) 1188-1197
  • 57 Hopkins PM, McNeil K. Evidence for immunosuppression in lung transplantation. Curr Opin Organ Transplant 2008; 13 (5) 477-483
  • 58 Sollinger HW. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60 (3) 225-232
  • 59 Kobashigawa J, Miller L, Renlund D , et al; Mycophenolate Mofetil Investigators. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation 1998; 66 (4) 507-515
  • 60 McNeil K, Glanville AR, Wahlers T , et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation 2006; 81 (7) 998-1003
  • 61 Palmer SM, Baz MA, Sanders L , et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation 2001; 71 (12) 1772-1776
  • 62 Speich R, Schneider S, Hofer M , et al. Mycophenolate mofetil reduces alveolar inflammation, acute rejection and graft loss due to bronchiolitis obliterans syndrome after lung transplantation. Pulm Pharmacol Ther 2010; 23 (5) 445-449
  • 63 Terada N, Lucas JJ, Szepesi A, Franklin RA, Domenico J, Gelfand EW. Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle. J Cell Physiol 1993; 154 (1) 7-15
  • 64 Cole OJ, Shehata M, Rigg KM. Effect of SDZ RAD on transplant arteriosclerosis in the rat aortic model. Transplant Proc 1998; 30 (5) 2200-2203
  • 65 Salminen US, Alho H, Taskinen E, Maasilta P, Ikonen T, Harjula AL. Effects of rapamycin analogue SDZ RAD on obliterative lesions in a porcine heterotopic bronchial allograft model. Transplant Proc 1998; 30 (5) 2204-2205
  • 66 Augustine JJ, Bodziak KA, Hricik DE. Use of sirolimus in solid organ transplantation. Drugs 2007; 67 (3) 369-391
  • 67 King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation 2003; 75 (9) 1437-1443
  • 68 Groetzner J, Kur F, Spelsberg F , et al; Munich Lung Transplant Group. Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression. J Heart Lung Transplant 2004; 23 (5) 632-638
  • 69 Cattaneo D, Merlini S, Pellegrino M , et al. Therapeutic drug monitoring of sirolimus: effect of concomitant immunosuppressive therapy and optimization of drug dosing. Am J Transplant 2004; 4 (8) 1345-1351
  • 70 Gullestad L, Iversen M, Mortensen SA , et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation 2010; 89 (7) 864-872
  • 71 Parada MT, Alba A, Sepúlveda C. Everolimus in lung transplantation in Chile. Transplant Proc 2010; 42 (1) 328-330
  • 72 Roman A, Ussetti P, Zurbano F , et al. A retrospective 12-month study of conversion to everolimus in lung transplant recipients. Transplant Proc 2011; 43 (7) 2693-2698
  • 73 Parada MT, Alba A, Sepúlveda C, Melo J. Long-term use of everolimus in lung transplant patients. Transplant Proc 2011; 43 (6) 2313-2315
  • 74 Bhorade S, Ahya VN, Baz MA , et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med 2011; 183 (3) 379-387
  • 75 Snell GI, Valentine VG, Vitulo P , et al; RAD B159 Study Group. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006; 6 (1) 169-177
  • 76 Snell GI, Levvey BJ, Chin W , et al. Sirolimus allows renal recovery in lung and heart transplant recipients with chronic renal impairment. J Heart Lung Transplant 2002; 21 (5) 540-546
  • 77 Euvrard S, Morelon E, Rostaing L , et al; TUMORAPA Study Group. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med 2012; 367 (4) 329-339
  • 78 Adcock IM, Ito K. Molecular mechanisms of corticosteroid actions. Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace / Fondazione clinica del lavoro, IRCCS [and] Istituto di clinica tisiologica e malattie apparato respiratorio, Universita di Napoli. Seco 2000; 55: 256-266
  • 79 Meyers BF, Lynch J, Trulock EP, Guthrie TJ, Cooper JD, Patterson GA. Lung transplantation: a decade of experience. Ann Surg 1999; 230 (3) 362-370 , discussion 370–371
  • 80 Retsema J, Fu W. Macrolides: structures and microbial targets. Int J Antimicrob Agents 2001; 18 (Suppl. 01) S3-S10
  • 81 Vos R, Vanaudenaerde BM, Verleden SE , et al. Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection. Transplantation 2012; 94 (2) 101-109
  • 82 Kobayashi H, Ohgaki N, Takeda H. Therapeutic possibilities for diffuse panbronchiolitis. Int J Antimicrob Agents 1993; 3 (Suppl. 01) S81-S86
  • 83 Saiman L, Marshall BC, Mayer-Hamblett N , et al; Macrolide Study Group. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003; 290 (13) 1749-1756
  • 84 Anwar GA, Bourke SC, Afolabi G, Middleton P, Ward C, Rutherford RM. Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med 2008; 102 (10) 1494-1496
  • 85 Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 2010; 42 (1) 62-68
  • 86 Murphy DM, Forrest IA, Corris PA , et al. Azithromycin attenuates effects of lipopolysaccharide on lung allograft bronchial epithelial cells. J Heart Lung Transplant 2008; 27 (11) 1210-1216
  • 87 Khalifah AP, Hachem RR, Chakinala MM , et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004; 170 (2) 181-187
  • 88 Vos R, Vanaudenaerde BM, De Vleeschauwer SI, Van Raemdonck DE, Dupont LJ, Verleden GM. De novo or persistent pseudomonal airway colonization after lung transplantation: importance for bronchiolitis obliterans syndrome?. Transplantation 2008; 86 (4) 624-625 , author reply 635–636
  • 89 Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2006; 174 (5) 566-570
  • 90 Verleden GM, Dupont LJ. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2004; 77 (9) 1465-1467
  • 91 Yates B, Murphy DM, Forrest IA , et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2005; 172 (6) 772-775
  • 92 Shitrit D, Bendayan D, Gidon S, Saute M, Bakal I, Kramer MR. Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients. J Heart Lung Transplant 2005; 24 (9) 1440-1443
  • 93 Jain R, Hachem RR, Morrell MR , et al. Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant 2010; 29 (5) 531-537
  • 94 Vos R, Vanaudenaerde BM, Verleden SE , et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J 2011; 37 (1) 164-172