Semin Thromb Hemost 2011; 37(4): 339-348
DOI: 10.1055/s-0031-1276582
© Thieme Medical Publishers

Heparin Cofactor II: Discovery, Properties, and Role in Controlling Vascular Homeostasis

Jill C. Rau1 , 5 , Jennifer W. Mitchell1 , Yolanda M. Fortenberry1 , 6 , Frank C. Church1 , 2 , 3 , 4
  • 1Department of Pathology and Laboratory Medicine, Chapel Hill, North Carolina
  • 2Department of Pharmacology, Chapel Hill, North Carolina
  • 3Department of Medicine, Chapel Hill, North Carolina
  • 4Department of UNC McAllister Heart Institute, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
  • 5Present address for Dr. Rau is Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
  • 6Present address for Dr. Fortenberry is Department of Pediatric-Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
Further Information

Publication History

Publication Date:
30 July 2011 (online)

ABSTRACT

Heparin cofactor II (HCII) is a serine protease inhibitor (serpin) found in high concentrations in human plasma. Despite its discovery >30 years ago, its physiological function is still poorly understood. It is known to inhibit thrombin, the predominant coagulation protease, and HCII-thrombin complexes have been found in plasma, yet it is thought to contribute little to normal hemostasis. However, thrombin has several other physiological functions, and therefore many biological roles for HCII need consideration. The unique structure and mechanism of action of HCII have helped guide our understanding of HCII. In particular, HCII binds many glycosaminoglycans (GAGs) such as heparin and heparin sulfate as well as several different polyanions to enhance its inhibition of thrombin. Distinctly, HCII is able to use the GAG dermatan sulfate for accelerated thrombin inhibition. Dermatan sulfate is found in high concentrations in the walls of blood vessels as well as in placental tissue. This knowledge has led to research indicating that HCII may play a protective role in atherosclerosis and placental thrombosis. Additionally, pharmaceuticals are being developed that use the dermatan sulfate activation of HCII for anticoagulation. Although much research is still needed to fully understand HCII, this humble protein may have significant impact in our medical future. This article reviews the laboratory history, protein characteristics, structure–activity relationships, protease inhibition, physiological function, and medical relevance of HCII in hopes of regenerating interest in this sometimes forgotten serpin.

REFERENCES

  • 1 Rosenberg R D, Aird W C. Vascular-bed—specific hemostasis and hypercoagulable states.  N Engl J Med. 1999;  340 (20) 1555-1564
  • 2 Colman R W, Hirsh J, Marder V J, Clowes A W, George J N. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 4th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001
  • 3 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development.  Arterioscler Thromb Vasc Biol. 2004;  24 (6) 1015-1022
  • 4 Monroe D M, Hoffman M. What does it take to make the perfect clot?.  Arterioscler Thromb Vasc Biol. 2006;  26 (1) 41-48
  • 5 Wakefield T W, Myers D D, Henke P K. Mechanisms of venous thrombosis and resolution.  Arterioscler Thromb Vasc Biol. 2008;  28 (3) 387-391
  • 6 Heit J A. Venous thromboembolism: disease burden, outcomes and risk factors.  J Thromb Haemost. 2005;  3 (8) 1611-1617
  • 7 Silverman G A, Bird P I, Carrell R W et al.. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature.  J Biol Chem. 2001;  276 (36) 33293-33296
  • 8 Huntington J A. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis.  J Thromb Haemost. 2003;  1 (7) 1535-1549
  • 9 Rau J C, Beaulieu L M, Huntington J A, Church F C. Serpins in thrombosis, hemostasis and fibrinolysis.  J Thromb Haemost. 2007;  5 (Suppl 1) 102-115
  • 10 Brinkhous K M, Smith H P, Warner E D, Seegers W H. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin.  Am J Physiol. 1939;  125 683-687
  • 11 Briginshaw G F, Shanberge J N. Identification of two distinct heparin cofactors in human plasma. II. Inhibition of thrombin and activated factor X.  Thromb Res. 1974;  4 (3) 463-477
  • 12 Briginshaw G F, Shanberge J N. Identification of two distinct heparin cofactors in human plasma. Separation and partial purification.  Arch Biochem Biophys. 1974;  161 (2) 683-690
  • 13 Tollefsen D M, Blank M K. Detection of a new heparin-dependent inhibitor of thrombin in human plasma.  J Clin Invest. 1981;  68 (3) 589-596
  • 14 Tollefsen D M, Majerus D W, Blank M K. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma.  J Biol Chem. 1982;  257 (5) 2162-2169
  • 15 Wunderwald P, Schrenk W J, Port H. Antithrombin BM from human plasma: an antithrombin binding moderately to heparin.  Thromb Res. 1982;  25 (3) 177-191
  • 16 Griffith M J, Carraway T, White G C, Dombrose F A. Heparin cofactor activities in a family with hereditary antithrombin III deficiency: evidence for a second heparin cofactor in human plasma.  Blood. 1983;  61 (1) 111-118
  • 17 Griffith M J, Noyes C M, Church F C. Reactive site peptide structural similarity between heparin cofactor II and antithrombin III.  J Biol Chem. 1985;  260 (4) 2218-2225
  • 18 Griffith M J, Marbet G A. Dermatan sulfate and heparin can be fractionated by affinity for heparin cofactor II.  Biochem Biophys Res Commun. 1983;  112 (2) 663-670
  • 19 Church F C, Griffith M J. Evidence for essential lysines in heparin cofactor II.  Biochem Biophys Res Commun. 1984;  124 (3) 745-751
  • 20 Tollefsen D M, Pestka C A, Monafo W J. Activation of heparin cofactor II by dermatan sulfate.  J Biol Chem. 1983;  258 (11) 6713-6716
  • 21 Hortin G, Tollefsen D M, Strauss A W. Identification of two sites of sulfation of human heparin cofactor II.  J Biol Chem. 1986;  261 (34) 15827-15830
  • 22 Church F C, Meade J B, Pratt C W. Structure-function relationships in heparin cofactor II: spectral analysis of aromatic residues and absence of a role for sulfhydryl groups in thrombin inhibition.  Arch Biochem Biophys. 1987;  259 (2) 331-340
  • 23 Griffith M J, Noyes C M, Tyndall J A, Church F C. Structural evidence for leucine at the reactive site of heparin cofactor II.  Biochemistry. 1985;  24 (24) 6777-6782
  • 24 Ragg H. A new member of the plasma protease inhibitor gene family.  Nucleic Acids Res. 1986;  14 (2) 1073-1088
  • 25 Blinder M A, Marasa J C, Reynolds C H, Deaven L L, Tollefsen D M. Heparin cofactor II: cDNA sequence, chromosome localization, restriction fragment length polymorphism, and expression in Escherichia coli .  Biochemistry. 1988;  27 (2) 752-759
  • 26 Tollefsen D M. Heparin cofactor II modulates the response to vascular injury.  Arterioscler Thromb Vasc Biol. 2007;  27 (3) 454-460
  • 27 Law R H, Zhang Q, McGowan S et al.. An overview of the serpin superfamily.  Genome Biol. 2006;  7 (5) 216
  • 28 Silverman G A, Bird P I, Carrell R W et al.. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature.  J Biol Chem. 2001;  276 (36) 33293-33296
  • 29 Zhang G S, Mehringer J H, Van Deerlin V MD, Kozak C A, Tollefsen D M. Murine heparin cofactor II: purification, cDNA sequence, expression, and gene structure.  Biochemistry. 1994;  33 (12) 3632-3642
  • 30 Kamp P, Strathmann A, Ragg H. Heparin cofactor II, antithrombin-beta and their complexes with thrombin in human tissues.  Thromb Res. 2001;  101 (6) 483-491
  • 31 Hoffman M, Loh K L, Bond V K, Palmieri D, Ryan J L, Church F C. Localization of heparin cofactor II in injured human skin: a potential role in wound healing.  Exp Mol Pathol. 2003;  75 (2) 109-118
  • 32 Sié P, Dupouy D, Pichon J, Boneu B. Turnover study of heparin cofactor II in healthy man.  Thromb Haemost. 1985;  54 (3) 635-638
  • 33 Tollefsen D M, Pestka C A. Heparin cofactor II activity in patients with disseminated intravascular coagulation and hepatic failure.  Blood. 1985;  66 (4) 769-774
  • 34 Pratt C W, Church F C, Pizzo S V. In vivo catabolism of heparin cofactor II and its complex with thrombin: evidence for a common receptor-mediated clearance pathway for three serine proteinase inhibitors.  Arch Biochem Biophys. 1988;  262 (1) 111-117
  • 35 Hatton M W, Ross B, Southward S M et al.. Uptake of heparin cofactor II and antithrombin into the aorta wall after a deendothelializing injury in vivo: comparison with the behaviors of prothrombin and fibrinogen.  J Lab Clin Med. 1999;  133 (1) 81-87
  • 36 Hatton M W, Hoogendoorn H, Southward S M, Ross B, Blajchman M A. Comparative metabolism and distribution of rabbit heparin cofactor II and rabbit antithrombin in rabbits.  Am J Physiol. 1997;  272 (5 Pt 1) E824-E831
  • 37 Buchanan M R, Brister S J. Anticoagulant and antithrombin effects of intimatan, a heparin cofactor II agonist.  Thromb Res. 2000;  99 (6) 603-612
  • 38 Kounnas M Z, Church F C, Argraves W S, Strickland D K. Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein.  J Biol Chem. 1996;  271 (11) 6523-6529
  • 39 Blinder M A, Andersson T R, Abildgaard U, Tollefsen D M. Heparin cofactor IIOslo. Mutation of Arg-189 to His decreases the affinity for dermatan sulfate.  J Biol Chem. 1989;  264 (9) 5128-5133
  • 40 Filion M L, Bhakta V, Nguyen L H, Liaw P S, Sheffield W P. Full or partial substitution of the reactive center loop of alpha-1-proteinase inhibitor by that of heparin cofactor II: P1 Arg is required for maximal thrombin inhibition.  Biochemistry. 2004;  43 (46) 14864-14872
  • 41 Kanagawa Y, Shigekiyo T, Aihara K, Akaike M, Azuma H, Matsumoto T. Molecular mechanism of type I congenital heparin cofactor (HC) II deficiency caused by a missense mutation at reactive P2 site: HC II Tokushima.  Thromb Haemost. 2001;  85 (1) 101-107
  • 42 Ragg H, Ulshöfer T, Gerewitz J. On the activation of human leuserpin-2, a thrombin inhibitor, by glycosaminoglycans.  J Biol Chem. 1990;  265 (9) 5211-5218
  • 43 Bhakta V, Begbie M E, Gupta A, Sandhu V, Sheffield W P. Heparin cofactor II is more sensitive than antithrombin to secretory impairment arising from mutations introduced into its carboxy-terminal region.  Thromb Res. 2004;  113 (2) 163-173
  • 44 Liaw P CY, Austin R C, Fredenburgh J C, Stafford A R, Weitz J I. Comparison of heparin- and dermatan sulfate-mediated catalysis of thrombin inactivation by heparin cofactor II.  J Biol Chem. 1999;  274 (39) 27597-27604
  • 45 Ciaccia A V, Cunningham E L, Church F C. Characterization of recombinant heparin cofactor II expressed in insect cells.  Protein Expr Purif. 1995;  6 (6) 806-812
  • 46 Huntington J A, Read R J, Carrell R W. Structure of a serpin-protease complex shows inhibition by deformation.  Nature. 2000;  407 (6806) 923-926
  • 47 Gettins P G. Serpin structure, mechanism, and function.  Chem Rev. 2002;  102 (12) 4751-4804
  • 48 Pike R N, Buckle A M, le Bonniec B F, Church F C. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans.  FEBS J. 2005;  272 (19) 4842-4851
  • 49 Patston P A, Church F C, Olson S T. Serpin-ligand interactions.  Methods. 2004;  32 (2) 93-109
  • 50 Baglin T P, Carrell R W, Church F C, Esmon C T, Huntington J A. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism.  Proc Natl Acad Sci U S A. 2002;  99 (17) 11079-11084
  • 51 Kresse H, Hausser H, Schönherr E. Small proteoglycans.  EXS. 1994;  70 73-100
  • 52 Tollefsen D M. The interaction of glycosaminoglycans with heparin cofactor II: structure and activity of a high-affinity dermatan sulfate hexasaccharide.  Adv Exp Med Biol. 1992;  313 167-176
  • 53 Cardin A D, Demeter D A, Weintraub H JR, Jackson R L. Molecular design and modeling of protein-heparin interactions.  Methods Enzymol. 1991;  203 556-583
  • 54 Casu B. Structure and biological activity of heparin and other glycosaminoglycans.  Pharmacol Res Commun. 1979;  11 (1) 1-18
  • 55 Höök M, Kjellén L, Johansson S. Cell-surface glycosaminoglycans.  Annu Rev Biochem. 1984;  53 847-869
  • 56 Church F C, Meade J B, Treanor R E, Whinna H C. Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin.  J Biol Chem. 1989;  264 (6) 3618-3623
  • 57 Church F C, Pratt C W, Treanor R E, Whinna H C. Antithrombin action of phosvitin and other phosphate-containing polyanions is mediated by heparin cofactor II.  FEBS Lett. 1988;  237 (1–2) 26-30
  • 58 Church F C, Treanor R E, Sherrill G B, Whinna H C. Carboxylate polyanions accelerate inhibition of thrombin by heparin cofactor II.  Biochem Biophys Res Commun. 1987;  148 (1) 362-368
  • 59 Pratt C W, Whinna H C, Meade J B, Treanor R E, Church F C. Physicochemical aspects of heparin cofactor II.  Ann N Y Acad Sci. 1989;  556 104-115
  • 60 Maimone M M, Tollefsen D M. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity.  J Biol Chem. 1990;  265 (30) 18263-18271
  • 61 Tovar A M, de Mattos D A, Stelling M P, Sarcinelli-Luz B S, Nazareth R A, Mourão P A. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II.  Biochim Biophys Acta. 2005;  1740 (1) 45-53
  • 62 McGuire E A, Tollefsen D M. Activation of heparin cofactor II by fibroblasts and vascular smooth muscle cells.  J Biol Chem. 1987;  262 (1) 169-175
  • 63 Hiramoto S A, Cunningham D D. Effects of fibroblasts and endothelial cells on inactivation of target proteases by protease nexin-1, heparin cofactor II, and C1-inhibitor.  J Cell Biochem. 1988;  36 (3) 199-207
  • 64 Whinna H C, Choi H U, Rosenberg L C, Church F C. Interaction of heparin cofactor II with biglycan and decorin.  J Biol Chem. 1993;  268 (6) 3920-3924
  • 65 Shirk R A, Church F C, Wagner W D. Arterial smooth muscle cell heparan sulfate proteoglycans accelerate thrombin inhibition by heparin cofactor II.  Arterioscler Thromb Vasc Biol. 1996;  16 (9) 1138-1146
  • 66 Shirk R A, Parthasarathy N, San Antonio J D, Church F C, Wagner W D. Altered dermatan sulfate structure and reduced heparin cofactor II-stimulating activity of biglycan and decorin from human atherosclerotic plaque.  J Biol Chem. 2000;  275 (24) 18085-18092
  • 67 Tollefsen D M. The interaction of glycosaminoglycans with heparin cofactor II.  Ann N Y Acad Sci. 1994;  714 21-31
  • 68 Tollefsen D M. Heparin cofactor II. In: Church F C, Cunningham D D, Ginsburg D, et al, eds. Advances in Experimental Medicine and Biology: Chemistry and Biology of Serpins. New York, NY: Plenum Press; 1997: 35-44
  • 69 Mungall D. Desmin 370 (Opocrin SpA/Alfa Wassermann).  IDrugs. 1999;  2 (6) 579-583
  • 70 Pavão M S, Aiello K R, Werneck C C et al.. Highly sulfated dermatan sulfates from Ascidians. Structure versus anticoagulant activity of these glycosaminoglycans.  J Biol Chem. 1998;  273 (43) 27848-27857
  • 71 Suwan J, Zhang Z, Li B et al.. Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity.  Carbohydr Res. 2009;  344 (10) 1190-1196
  • 72 Zhu Z, Zhang Q, Chen L et al.. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation.  Thromb Res. 2010;  125 (5) 419-426
  • 73 Volpi N, Maccari F. Structural characterization and antithrombin activity of dermatan sulfate purified from marine clam Scapharca inaequivalvis .  Glycobiology. 2009;  19 (4) 356-367
  • 74 Majdoub H, Ben Mansour M, Chaubet F, Roudesli M S, Maaroufi R M. Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis .  Biochim Biophys Acta. 2009;  1790 (10) 1377-1381
  • 75 Fonseca R J, Mourão P A. Fucosylated chondroitin sulfate as a new oral antithrombotic agent.  Thromb Haemost. 2006;  96 (6) 822-829
  • 76 Sarilla S, Habib S Y, Kravtsov D V, Matafonov A, Gailani D, Verhamme I M. Sucrose octasulfate selectively accelerates thrombin inactivation by heparin cofactor II.  J Biol Chem. 2010;  285 (11) 8278-8289
  • 77 Li B, Suwan J, Martin J G et al.. Oversulfated chondroitin sulfate interaction with heparin-binding proteins: new insights into adverse reactions from contaminated heparins.  Biochem Pharmacol. 2009;  78 (3) 292-300
  • 78 Whinna H C, Blinder M A, Szewczyk M, Tollefsen D M, Church F C. Role of lysine 173 in heparin binding to heparin cofactor II.  J Biol Chem. 1991;  266 (13) 8129-8135
  • 79 Blinder M A, Tollefsen D M. Site-directed mutagenesis of arginine 103 and lysine 185 in the proposed glycosaminoglycan-binding site of heparin cofactor II.  J Biol Chem. 1990;  265 (1) 286-291
  • 80 Ragg H, Ulshöfer T, Gerewitz J. Glycosaminoglycan-mediated leuserpin-2/thrombin interaction. Structure-function relationships.  J Biol Chem. 1990;  265 (36) 22386-22391
  • 81 Johnson D J, Li W, Adams T E, Huntington J A. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation.  EMBO J. 2006;  25 (9) 2029-2037
  • 82 Sheehan J P, Tollefsen D M, Sadler J E. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans.  J Biol Chem. 1994;  269 (52) 32747-32751
  • 83 Verhamme I M, Bock P E, Jackson C M. The preferred pathway of glycosaminoglycan-accelerated inactivation of thrombin by heparin cofactor II.  J Biol Chem. 2004;  279 (11) 9785-9795
  • 84 Van Deerlin V MD, Tollefsen D M. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of alpha-thrombin in the presence of glycosaminoglycans.  J Biol Chem. 1991;  266 (30) 20223-20231
  • 85 Mitchell J W, Church F C. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition.  J Biol Chem. 2002;  277 (22) 19823-19830
  • 86 Sutherland J S, Bhakta V, Sheffield W P. The appended tail region of heparin cofactor II and additional reactive centre loop mutations combine to increase the reactivity and specificity of alpha1-proteinase inhibitor M358R for thrombin.  Thromb Haemost. 2007;  98 (5) 1014-1023
  • 87 Sutherland J S, Bhakta V, Filion M L, Sheffield W P. The transferable tail: fusion of the N-terminal acidic extension of heparin cofactor II to alpha1-proteinase inhibitor M358R specifically increases the rate of thrombin inhibition.  Biochemistry. 2006;  45 (38) 11444-11452
  • 88 Tollefsen D M. Insight into the mechanism of action of heparin cofactor II.  Thromb Haemost. 1995;  74 (5) 1209-1214
  • 89 O'Keeffe D, Olson S T, Gasiunas N, Gallagher J, Baglin T P, Huntington J A. The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism.  J Biol Chem. 2004;  279 (48) 50267-50273
  • 90 Fortenberry Y M, Whinna H C, Gentry H R, Myles T, Leung L L, Church F C. Molecular mapping of the thrombin-heparin cofactor II complex.  J Biol Chem. 2004;  279 (41) 43237-43244
  • 91 Myles T, Church F C, Whinna H C, Monard D, Stone S R. Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes.  J Biol Chem. 1998;  273 (47) 31203-31208
  • 92 Liaw P CY, Becker D L, Stafford A R, Fredenburgh J C, Weitz J I. Molecular basis for the susceptibility of fibrin-bound thrombin to inactivation by heparin cofactor ii in the presence of dermatan sulfate but not heparin.  J Biol Chem. 2001;  276 (24) 20959-20965
  • 93 Church F C, Noyes C M, Griffith M J. Inhibition of chymotrypsin by heparin cofactor II.  Proc Natl Acad Sci U S A. 1985;  82 (19) 6431-6434
  • 94 Parker K A, Tollefsen D M. The protease specificity of heparin cofactor II. Inhibition of thrombin generated during coagulation.  J Biol Chem. 1985;  260 (6) 3501-3505
  • 95 Toulon P, Chadeuf G, Bouillot J L et al.. Involvement of heparin cofactor II in chymotrypsin neutralization and in the pancreatic proteinase-antiproteinase interaction during acute pancreatitis in man.  Eur J Clin Invest. 1991;  21 (3) 303-309
  • 96 Derechin V M, Blinder M A, Tollefsen D M. Substitution of arginine for Leu444 in the reactive site of heparin cofactor II enhances the rate of thrombin inhibition.  J Biol Chem. 1990;  265 (10) 5623-5628
  • 97 Liu L, Dewar L, Song Y et al.. Inhibition of thrombin by antithrombin III and heparin cofactor II in vivo.  Thromb Haemost. 1995;  73 (3) 405-412
  • 98 Tollefsen D M. Heparin cofactor II deficiency.  Arch Pathol Lab Med. 2002;  126 (11) 1394-1400
  • 99 Villa P, Aznar J, Vaya A et al.. Hereditary homozygous heparin cofactor II deficiency and the risk of developing venous thrombosis.  Thromb Haemost. 1999;  82 (3) 1011-1014
  • 100 Corral J, Aznar J, Gonzalez-Conejero R et al.. Homozygous deficiency of heparin cofactor II: relevance of P17 glutamate residue in serpins, relationship with conformational diseases, and role in thrombosis.  Circulation. 2004;  110 (10) 1303-1307
  • 101 Tanaka K A, Szlam F, Vinten-Johansen J, Cardin A D, Levy J H. Effects of antithrombin and heparin cofactor II levels on anticoagulation with Intimatan.  Thromb Haemost. 2005;  94 (4) 808-813
  • 102 Giri T K, Tollefsen D M. Placental dermatan sulfate: isolation, anticoagulant activity, and association with heparin cofactor II.  Blood. 2006;  107 (7) 2753-2758
  • 103 Massouh M, Jatoi A, Gordon E M, Ratnoff O D. Heparin cofactor II activity in plasma during pregnancy and oral contraceptive use.  J Lab Clin Med. 1989;  114 (6) 697-699
  • 104 Andersson T, Lorentzen B, Hogdahl H, Clausen T, Mowinckel M C, Abildgaard U. Thrombin-inhibitor complexes in the blood during and after delivery.  Thromb Res. 1996;  82 (2) 109-117
  • 105 Andrew M, Mitchell L, Berry L et al.. An anticoagulant dermatan sulfate proteoglycan circulates in the pregnant woman and her fetus.  J Clin Invest. 1992;  89 (1) 321-326
  • 106 Bellart J, Gilabert R, Cabero L, Fontcuberta J, Monasterio J, Miralles R M. Heparin cofactor II: a new marker for pre-eclampsia.  Blood Coagul Fibrinolysis. 1998;  9 (2) 205-208
  • 107 He I, Tollefsen D M. Heparin cofactor II-deficient mice are viable and fertile.  Blood. 2000;  45 (Abst)
  • 108 He L, Vicente C P, Westrick R J, Eitzman D T, Tollefsen D M. Heparin cofactor II inhibits arterial thrombosis after endothelial injury.  J Clin Invest. 2002;  109 (2) 213-219
  • 109 Aihara K, Azuma H, Akaike M et al.. Strain-dependent embryonic lethality and exaggerated vascular remodeling in heparin cofactor II-deficient mice.  J Clin Invest. 2007;  117 (6) 1514-1526
  • 110 Ishiguro K, Kojima T, Kadomatsu K et al.. Complete antithrombin deficiency in mice results in embryonic lethality.  J Clin Invest. 2000;  106 (7) 873-878
  • 111 Aihara K, Azuma H, Takamori N et al.. Heparin cofactor II is a novel protective factor against carotid atherosclerosis in elderly individuals.  Circulation. 2004;  109 (22) 2761-2765
  • 112 Huang P H, Leu H B, Chen J W et al.. Decreased heparin cofactor II activity is associated with impaired endothelial function determined by brachial ultrasonography and predicts cardiovascular events.  Int J Cardiol. 2007;  114 (2) 152-158
  • 113 Giri T K, Ahn C W, Wu K K, Tollefsen D M. Heparin cofactor II levels do not predict the development of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study.  Arterioscler Thromb Vasc Biol. 2005;  25 (12) 2689-2690
  • 114 Rau J C, Deans C, Hoffman M R et al.. Heparin cofactor II in atherosclerotic lesions from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study.  Exp Mol Pathol. 2009;  87 (3) 178-183
  • 115 Schillinger M, Exner M, Sabeti S et al.. High plasma heparin cofactor II activity protects from restenosis after femoropopliteal stenting.  Thromb Haemost. 2004;  92 (5) 1108-1113
  • 116 Takamori N, Azuma H, Kato M et al.. High plasma heparin cofactor II activity is associated with reduced incidence of in-stent restenosis after percutaneous coronary intervention.  Circulation. 2004;  109 (4) 481-486
  • 117 Vicente C P, He L, Tollefsen D M. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice.  Blood. 2007;  110 (13) 4261-4267
  • 118 He L, Giri T K, Vicente C P, Tollefsen D M. Vascular dermatan sulfate regulates the antithrombotic activity of heparin cofactor II.  Blood. 2008;  111 (8) 4118-4125
  • 119 Randall D R, Sinclair G B, Colobong K E, Hetty E, Clarke L A. Heparin cofactor II-thrombin complex in MPS I: a biomarker of MPS disease.  Mol Genet Metab. 2006;  88 (3) 235-243
  • 120 Randall D R, Colobong K E, Hemmelgarn H et al.. Heparin cofactor II-thrombin complex: a biomarker of MPS disease.  Mol Genet Metab. 2008;  94 (4) 456-461
  • 121 Langford-Smith K, Arasaradnam M, Wraith J E, Wynn R, Bigger B W. Evaluation of heparin cofactor II-thrombin complex as a biomarker on blood spots from mucopolysaccharidosis I, IIIA and IIIB mice.  Mol Genet Metab. 2010;  99 (3) 269-274

Frank C ChurchPh.D. 

Department of Pathology and Laboratory Medicine, Campus Box 7035, 932 Mary Ellen Jones Building

The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7035

Email: fchurch@email.unc.edu

    >