Semin Thromb Hemost 2010; 36(5): 498-509
DOI: 10.1055/s-0030-1255444
© Thieme Medical Publishers

Recombinant Factor IX for Clinical and Research Use

Paul E. Monahan1 , Jorge Di Paola2
  • 1Department of Pediatrics, Gene Therapy Center, and the Harold R. Roberts Comprehensive Hemophilia Treatment Center at the University or North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • 2Department of Pediatrics and the Human Medical Genetics Program at the University of Colorado, Colorado, Denver
Further Information

Publication History

Publication Date:
14 July 2010 (online)

ABSTRACT

The last significant advance in the therapy of hemophilia B was the introduction of recombinant factor IX (FIX), ensuring an advanced level of safety from potential infectious contaminants of plasma-derived clotting factors. Since that time, recombinant DNA techniques have been applied in research to elucidate the role of FIX and its functional domains within coagulation. At the same time, recombinant DNA technology has been applied to engineer an expanding spectrum of novel FIX therapies that are now being translating into clinical trials. The experience with the existing recombinant FIX product is reviewed with a focus on the novel products and the potential to improve the quality of life for individuals with hemophilia B.

REFERENCES

  • 1 Pavlovsky A. Contribution to the pathogenesis of hemophilia.  Blood. 1947;  2(2) 185-191
  • 2 Biggs R, Douglas A S, MacFarlane R G, Dacie J V, Pitney W R, Merskey . Christmas disease: a condition previously mistaken for haemophilia.  Br Med J. 1952;  2(4799) 1378-1382
  • 3 Aggeler P M, White S G, Glendening M B, Page E W, Leake T B, Bates G. Plasma thromboplastin component (PTC) deficiency; a new disease resembling hemophilia.  Proc Soc Exp Biol Med. 1952;  79(4) 692-694
  • 4 Kurachi K, Davie E W. Isolation and characterization of a cDNA coding for human factor IX.  Proc Natl Acad Sci U S A. 1982;  79(21) 6461-6464
  • 5 Choo K H, Gould K G, Rees D J, Brownlee G G. Molecular cloning of the gene for human anti-haemophilic factor IX.  Nature. 1982;  299(5879) 178-180
  • 6 Toole J J, Knopf J L, Wozney J M et al.. Molecular cloning of a cDNA encoding human antihaemophilic factor.  Nature. 1984;  312(5992) 342-347
  • 7 Yoshitake S, Schach B G, Foster D C, Davie E W, Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B).  Biochemistry. 1985;  24(14) 3736-3750
  • 8 Johnson I S. Human insulin from recombinant DNA technology.  Science. 1983;  219(4585) 632-637
  • 9 White II G C, Pickens E M, Liles D K, Roberts H R. Mammalian recombinant coagulation proteins: structure and function.  Transfus Sci. 1998;  19(2) 177-189
  • 10 Evatt B L. The tragic history of AIDS in the hemophilia population, 1982–1984.  J Thromb Haemost. 2006;  4(11) 2295-2301
  • 11 Kaufman R J, Wasley L C, Furie B C, Furie B, Shoemaker C B. Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in Chinese hamster ovary cells.  J Biol Chem. 1986;  261(21) 9622-9628
  • 12 Chorba T L, Holman R C, Clarke M J, Evatt B L. Effects of HIV infection on age and cause of death for persons with hemophilia A in the United States.  Am J Hematol. 2001;  66(4) 229-240
  • 13 Pipe S W. Recombinant clotting factors.  Thromb Haemost. 2008;  99(5) 840-850
  • 14 Stafford D W. The vitamin K cycle.  J Thromb Haemost. 2005;  3(8) 1873-1878
  • 15 Harrison S, Adamson S, Bonam D et al.. The manufacturing process for recombinant factor IX.  Semin Hematol. 1998;  35(2, Suppl 2) 4-10
  • 16 Lambert T, Recht M, Valentino L A et al.. Reformulated BeneFIX: efficacy and safety in previously treated patients with moderately severe to severe haemophilia B.  Haemophilia. 2007;  13(3) 233-243
  • 17 Bond M, Jankowski M, Patel H et al.. Biochemical characterization of recombinant factor IX.  Semin Hematol. 1998;  35(2, Suppl 2) 11-17
  • 18 Wallmark A, Kunkel G, Mouhli H et al.. Population genetics of the Malmö polymorphism of coagulation factor IX.  Hum Hered. 1991;  41(6) 391-396
  • 19 Gillis S, Furie B C, Furie B et al.. gamma-Carboxyglutamic acids 36 and 40 do not contribute to human factor IX function.  Protein Sci. 1997;  6(1) 185-196
  • 20 Kaufman R J. Post-translational modifications required for coagulation factor secretion and function.  Thromb Haemost. 1998;  79(6) 1068-1079
  • 21 Atoda H, Yokota E, Morita T. Characterization of a monoclonal antibody B1 that recognizes phosphorylated Ser-158 in the activation peptide region of human coagulation factor IX.  J Biol Chem. 2006;  281(14) 9314-9320
  • 22 White II G C, Beebe A, Nielsen B. Recombinant factor IX.  Thromb Haemost. 1997;  78(1) 261-265
  • 23 Arruda V R, Hagstrom J N, Deitch J et al.. Posttranslational modifications of recombinant myotube-synthesized human factor IX.  Blood. 2001;  97(1) 130-138
  • 24 Chang J-Y, Brock J, Griffith M J, Monroe D M. Glycosylation of the activation peptide of factor IX determines plasma half-life.  J Thromb Haemost. 2007;  5 , Abstract O-M-088
  • 25 Begbie M E, Mamdani A, Gataiance S et al.. An important role for the activation peptide domain in controlling factor IX levels in the blood of haemophilia B mice.  Thromb Haemost. 2005;  94(6) 1138-1147
  • 26 Bharadwaj D, Harris R J, Kisiel W, Smith K J. Enzymatic removal of sialic acid from human factor IX and factor X has no effect on their coagulant activity.  J Biol Chem. 1995;  270(12) 6537-6542
  • 27 Fischer B E, Dorner F. Recombinant coagulation factor IX: glycosylation analysis and in vitro conversion into human-like sialylation pattern.  Thromb Res. 1998;  89(3) 147-150
  • 28 Griffith M J, Monroe D M, Van Cott K E, Walker A, Waugh S, Drohan W N. N-Glycan sialylation is important for in vivo recovery of recombinant factor IX.  J Thromb Haemost. 2007;  5 , Abstract P-M-043
  • 29 Sun Y M, Jin D Y, Camire R M, Stafford D W. Vitamin K epoxide reductase significantly improves carboxylation in a cell line overexpressing factor X.  Blood. 2005;  106(12) 3811-3815
  • 30 Wajih N, Hutson S M, Owen J, Wallin R. Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle.  J Biol Chem. 2005;  280(36) 31603-31607
  • 31 Wajih N, Owen J, Wallin R. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.  Thromb Res. 2008;  122(3) 405-410
  • 32 Noyes C M, Griffith M J, Roberts H R, Lundblad R L. Identification of the molecular defect in factor IX Chapel Hill: substitution of histidine for arginine at position 145.  Proc Natl Acad Sci U S A. 1983;  80(14) 4200-4202
  • 33 Stanley T B, Wu S M, Houben R J, Mutucumarana V P, Stafford D W. Role of the propeptide and gamma-glutamic acid domain of factor IX for in vitro carboxylation by the vitamin K-dependent carboxylase.  Biochemistry. 1998;  37(38) 13262-13268
  • 34 Stern D M, Drillings M, Nossel H L, Hurlet-Jensen A, LaGamma K S, Owen J. Binding of factors IX and IXa to cultured vascular endothelial cells.  Proc Natl Acad Sci U S A. 1983;  80(13) 4119-4123
  • 35 Heimark R L, Schwartz S M. Binding of coagulation factors IX and X to the endothelial cell surface.  Biochem Biophys Res Commun. 1983;  111(2) 723-731
  • 36 Toomey J R, Smith K J, Roberts H R, Stafford D W. The endothelial cell binding determinant of human factor IX resides in the gamma-carboxyglutamic acid domain.  Biochemistry. 1992;  31(6) 1806-1808
  • 37 Cheung W F, Hamaguchi N, Smith K J, Stafford D W. The binding of human factor IX to endothelial cells is mediated by residues 3-11.  J Biol Chem. 1992;  267(29) 20529-20531
  • 38 Cheung W F, van den Born J, Kühn K, Kjellén L, Hudson B G, Stafford D W. Identification of the endothelial cell binding site for factor IX.  Proc Natl Acad Sci U S A. 1996;  93(20) 11068-11073
  • 39 Gui T, Lin H F, Jin D Y et al.. Circulating and binding characteristics of wild-type factor IX and certain Gla domain mutants in vivo.  Blood. 2002;  100(1) 153-158
  • 40 Schuettrumpf J, Herzog R W, Schlachterman A, Kaufhold A, Stafford D W, Arruda V R. Factor IX variants improve gene therapy efficacy for hemophilia B.  Blood. 2005;  105(6) 2316-2323
  • 41 Gui T, Reheman A, Ni H et al.. Abnormal hemostasis in a knock-in mouse carrying a variant of factor IX with impaired binding to collagen type IV.  J Thromb Haemost. 2009;  7(11) 1843-1851
  • 42 Monahan P E, Liesner R, Sullivan S T, Ramirez M E, Kelly P, Roth D A. Safety and efficacy of investigator-prescribed BeneFIX prophylaxis in children less than 6 years of age with severe haemophilia B.  Haemophilia. 2010;  16 460-468
  • 43 Roth D A, Kessler C M, Pasi K J, Rup B, Courter S G, Tubridy K L. Recombinant Factor IX Study Group . Human recombinant factor IX: safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates.  Blood. 2001;  98(13) 3600-3606
  • 44 Shapiro A D, Di Paola J, Cohen A et al.. The safety and efficacy of recombinant human blood coagulation factor IX in previously untreated patients with severe or moderately severe hemophilia B.  Blood. 2005;  105(2) 518-525
  • 45 Poon M C, Lillicrap D, Hensman C, Card R, Scully M F. Recombinant factor IX recovery and inhibitor safety: a Canadian post-licensure surveillance study.  Thromb Haemost. 2002;  87(3) 431-435
  • 46 Björkman S, Shapiro A D, Berntorp E. Pharmacokinetics of recombinant factor IX in relation to age of the patient: implications for dosing in prophylaxis.  Haemophilia. 2001;  7(2) 133-139
  • 47 Björkman S, Folkesson A, Berntorp E. In vivo recovery of factor VIII and factor IX: intra- and interindividual variance in a clinical setting.  Haemophilia. 2007;  13(1) 2-8
  • 48 White G, Shapiro A, Ragni M et al.. Clinical evaluation of recombinant factor IX.  Semin Hematol. 1998;  35(2, Suppl 2) 33-38
  • 49 Ragni M V, Pasi K J, White G C, Giangrande P L, Courter S G, Tubridy K L. Recombinant FIX Surgical Study Group . Use of recombinant factor IX in subjects with haemophilia B undergoing surgery.  Haemophilia. 2002;  8(2) 91-97
  • 50 Ljung R C. Gene mutations and inhibitor formation in patients with hemophilia B.  Acta Haematol. 1995;  94(Suppl 1) 49-52
  • 51 Warrier I, Ewenstein B M, Koerper M A et al.. Factor IX inhibitors and anaphylaxis in hemophilia B.  J Pediatr Hematol Oncol. 1997;  19(1) 23-27
  • 52 Gouw S C, van den Berg H M. The multifactorial etiology of inhibitor development in hemophilia: genetics and environment.  Semin Thromb Hemost. 2009;  35(8) 723-734
  • 53 Chitlur M, Warrier I, Rajpurkar M, Lusher J M. Inhibitors in factor IX deficiency a report of the ISTH-SSC international FIX inhibitor registry (1997–2006).  Haemophilia. 2009;  15(5) 1027-1031
  • 54 Ewenstein B M, Takemoto C, Warrier I et al.. Nephrotic syndrome as a complication of immune tolerance in hemophilia B.  Blood. 1997;  89(3) 1115-1116
  • 55 DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention.  Br J Haematol. 2007;  138(3) 305-315
  • 56 Dimichele D. The North American Immune Tolerance Registry: contributions to the thirty-year experience with immune tolerance therapy.  Haemophilia. 2009;  15(1) 320-328
  • 57 The Universal Data Collection Program . Report on the Universal Data Collection Program. July 2005; 7(1).  Available at: http://www.cdc.gov/ncbddd/hbd/documents/UDC7(1).pdf Accessed January 3, 2009; 
  • 58 Franchini M, Lippi G. Recombinant activated factor VII: mechanisms of action and current indications.  Semin Thromb Hemost. 2010;  36(5) 485-492
  • 59 Giannelli F, Green P M, Sommer S S et al.. Haemophilia B: database of point mutations and short additions and deletions—eighth edition.  Nucleic Acids Res. 1998;  26(1) 265-268
  • 60 Gomperts E D, Lee M, Nichols T, Griffith M. IB1001, a new recombinant factor IX preparation: Initial safety and characterization.  J Thromb Haemost. 2007;  5 , Abstract OC-MO-086
  • 61 Van Cott K E, Monahan P E, Nichols T C, Velander W H. Haemophilic factors produced by transgenic livestock: abundance that can enable alternative therapies worldwide.  Haemophilia. 2004;  10(suppl 4) 70-76
  • 62 Pollock D P, Kutzko J P, Birck-Wilson E, Williams J L, Echelard Y, Meade H M. Transgenic milk as a method for the production of recombinant antibodies.  J Immunol Methods. 1999;  231(1-2) 147-157
  • 63 Schnieke A E, Kind A J, Ritchie W A et al.. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.  Science. 1997;  278(5346) 2130-2133
  • 64 Lindsay M, Gil G C, Cadiz A, Velander W H, Zhang C, Van Cott K E. Purification of recombinant DNA-derived factor IX produced in transgenic pig milk and fractionation of active and inactive subpopulations.  J Chromatogr A. 2004;  1026(1-2) 149-157
  • 65 Gil G C, Velander W H, Van Cott K E. Analysis of the N-glycans of recombinant human factor IX purified from transgenic pig milk.  Glycobiology. 2008;  18(7) 526-539
  • 66 Roopenian D C, Akilesh S. FcRn: the neonatal Fc receptor comes of age.  Nat Rev Immunol. 2007;  7(9) 715-725
  • 67 Bitonti A J, Dumont J A, Low S C et al.. Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway.  Proc Natl Acad Sci U S A. 2004;  101(26) 9763-9768
  • 68 Peters R T, Low S C, Kamphaus G D et al.. Prolonged activity of factor IX as a monomeric Fc fusion protein.  Blood. 2010;  115(10) 2057-2064
  • 69 Sheffield W P, Mamdani A, Hortelano G et al.. Effects of genetic fusion of factor IX to albumin on in vivo clearance in mice and rabbits.  Br J Haematol. 2004;  126(4) 565-573
  • 70 Metzner H J, Weimer T, Kronthaler U, Lang W, Schulte S. Genetic fusion to albumin improves the pharmacokinetic properties of factor IX.  Thromb Haemost. 2009;  102(4) 634-644
  • 71 Elm T, Oestergaard H, Tranholm M. Dose response and prolonged effect of 40K PEG-FIX on bleeding in hemophilia B mice.  J Thromb Haemost. 2009;  7 , Abstract OC-MO-084
  • 72 Holm P K, Petersen L C, Bjelke J R et al.. Prolonged in vivo half-life and retained activity of factor IX glycoPEGylated in the activation peptide.  J Thromb Haemost. 2009;  7 , Abstract PP-MO-575
  • 73 Murphy S L, High K A. Gene therapy for haemophilia.  Br J Haematol. 2008;  140(5) 479-487
  • 74 Niemeyer G P, Herzog R W, Mount J et al.. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy.  Blood. 2009;  113(4) 797-806
  • 75 Galeffi P, Brownlee G G. The propeptide region of clotting factor IX is a signal for a vitamin K dependent carboxylase: evidence from protein engineering of amino acid -4.  Nucleic Acids Res. 1987;  15(22) 9505-9513
  • 76 Handford P A, Winship P R, Brownlee G G. Protein engineering of the propeptide of human factor IX.  Protein Eng. 1991;  4(3) 319-323
  • 77 Yang X, Walsh P N. An ordered sequential mechanism for factor IX and factor IXa binding to platelet receptors in the assembly of the factor X-activating complex.  Biochem J. 2005;  390(Pt 1) 157-167
  • 78 Cheung W F, Straight D L, Smith K J, Lin S W, Roberts H R, Stafford D W. The role of the epidermal growth factor-1 and hydrophobic stack domains of human factor IX in binding to endothelial cells.  J Biol Chem. 1991;  266(14) 8797-8800
  • 79 Rees D J, Jones I M, Handford P A et al.. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX.  EMBO J. 1988;  7(7) 2053-2061
  • 80 Lenting P J, Christophe O D, Maat H, Rees D J, Mertens K. Ca2+ binding to the first epidermal growth factor-like domain of human blood coagulation factor IX promotes enzyme activity and factor VIII light chain binding.  J Biol Chem. 1996;  271(41) 25332-25337
  • 81 Mathur A, Bajaj S P. Protease and EGF1 domains of factor IXa play distinct roles in binding to factor VIIIa. Importance of helix 330 (helix 162 in chymotrypsin) of protease domain of factor IXa in its interaction with factor VIIIa.  J Biol Chem. 1999;  274(26) 18477-18486
  • 82 Lin S W, Smith K J, Welsch D, Stafford D W. Expression and characterization of human factor IX and factor IX-factor X chimeras in mouse C127 cells.  J Biol Chem. 1990;  265(1) 144-150
  • 83 Zhong D, Smith K J, Birktoft J J, Bajaj S P. First epidermal growth factor-like domain of human blood coagulation factor IX is required for its activation by factor VIIa/tissue factor but not by factor XIa.  Proc Natl Acad Sci U S A. 1994;  91(9) 3574-3578
  • 84 Chang Y J, Wu H L, Hamaguchi N, Hsu Y C, Lin S W. Identification of functionally important residues of the epidermal growth factor-2 domain of factor IX by alanine-scanning mutagenesis. Residues Asn(89)-Gly(93) are critical for binding factor VIIIa.  J Biol Chem. 2002;  277(28) 25393-25399
  • 85 Chang J, Jin J, Lollar P et al.. Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity.  J Biol Chem. 1998;  273(20) 12089-12094
  • 86 Simioni P, Tormene D, Tognin G et al.. X-linked thrombophilia with a mutant factor IX (factor IX Padua).  N Engl J Med. 2009;  361(17) 1671-1675
  • 87 Finn J D, Simioni P, Iacobelli N et al.. FIX-R338L (FIX Padua) as a successful alternative for the treatment of canine severe hemophilia B.  Blood. 2009;  114 290-291. , Abstract 694
  • 88 Ewenstein B M, Joist J H, Shapiro A D Mononine Comparison Study Group et al. Pharmacokinetic analysis of plasma-derived and recombinant F IX concentrates in previously treated patients with moderate or severe hemophilia B.  Transfusion. 2002;  42(2) 190-197
  • 89 Kisker C T, Eisberg A, Schwartz B. Mononine Study Group . Prophylaxis in factor IX deficiency product and patient variation.  Haemophilia. 2003;  9(3) 279-284
  • 90 Martorell M, Altisent C, Parra R. Recovery of recombinant factor IX determined in clinical practice.  Haemophilia. 2009;  15(3) 840-842

Paul E MonahanM.D. 

Associate Professor, Pediatrics, Hematology/Oncology, University of North Carolina at Chapel Hill

CB #7236, 1185 1st Floor Physicians Office Building, 170 Manning Drive, Chapel Hill, North Carolina 27599-7236

Email: Paul_Monahan@med.unc.edu

    >