Semin Thromb Hemost 2010; 36(2): 163-169
DOI: 10.1055/s-0030-1251500
© Thieme Medical Publishers

Platelet-Derived Chemokines in Vascular Remodeling and Atherosclerosis

Rory R. Koenen1 , 2 , Christian Weber1 , 2
  • 1Institute for Molecular Cardiovascular Research, University Hospital Aachen, Medical Faculty, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
  • 2Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands
Further Information

Publication History

Publication Date:
22 April 2010 (online)

ABSTRACT

During the past decade it has become increasingly clear that platelets exert important functions in the context of inflammation, beyond their role in hemostasis. Platelets may adhere to intact endothelial cells and promote local vascular inflammation by recruiting leukocytes via direct interactions or by secreting inflammatory mediators such as chemokines. Accordingly, platelet-derived chemokines play a crucial role in directing leukocytes to sites of vascular injury or dysfunction, thereby contributing to neointimal hyperplasia or atherosclerosis. In this review, we discuss the function of platelets as immune cells that potentiate vascular inflammation with a special focus on platelet-derived chemokines: their effects and interactions and their potential quality as targets for the treatment and/or prevention of cardiovascular disease.

REFERENCES

  • 1 Battinelli E M, Hartwig J H, Italiano Jr J E. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis.  Curr Opin Hematol. 2007;  14(5) 419-426
  • 2 Junt T, Schulze H, Chen Z et al.. Dynamic visualization of thrombopoiesis within bone marrow.  Science. 2007;  317(5845) 1767-1770
  • 3 Jurk K, Kehrel B E. Platelets: physiology and biochemistry.  Semin Thromb Hemost. 2005;  31(4) 381-392
  • 4 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets.  Arterioscler Thromb Vasc Biol. 2008;  28(3) 403-412
  • 5 Cosemans J M, Iserbyt B F, Deckmyn H, Heemskerk J W. Multiple ways to switch platelet integrins on and off.  J Thromb Haemost. 2008;  6(8) 1253-1261
  • 6 Lindemann S, Tolley N D, Dixon D A et al.. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis.  J Cell Biol. 2001;  154(3) 485-490
  • 7 Lindemann S, Gawaz M. The active platelet: translation and protein synthesis in an anucleate cell.  Semin Thromb Hemost. 2007;  33(2) 144-150
  • 8 Mason K D, Carpinelli M R, Fletcher J I et al.. Programmed anuclear cell death delimits platelet life span.  Cell. 2007;  128(6) 1173-1186
  • 9 Zhang H, Nimmer P M, Tahir S K et al.. Bcl-2 family proteins are essential for platelet survival.  Cell Death Differ. 2007;  14(5) 943-951
  • 10 May A E, Seizer P, Gawaz M. Platelets: inflammatory firebugs of vascular walls.  Arterioscler Thromb Vasc Biol. 2008;  28(3) s5-s10
  • 11 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease.  Circ Res. 2007;  100(1) 27-40
  • 12 Weyrich A S, Zimmerman G A. Platelets: signaling cells in the immune continuum.  Trends Immunol. 2004;  25(9) 489-495
  • 13 von Hundelshausen P, Petersen F, Brandt E. Platelet-derived chemokines in vascular biology.  Thromb Haemost. 2007;  97(5) 704-713
  • 14 Von Hundelshausen P, Koenen R R, Weber C. Platelet-mediated enhancement of leukocyte adhesion.  Microcirculation. 2009;  16 84-96
  • 15 Gawaz M, Langer H, May A E. Platelets in inflammation and atherogenesis.  J Clin Invest. 2005;  115(12) 3378-3384
  • 16 van Gils J M, Zwaginga J J, Hordijk P L. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases.  J Leukoc Biol. 2009;  85(2) 195-204
  • 17 Morel O, Toti F, Hugel B et al.. Procoagulant microparticles: disrupting the vascular homeostasis equation?.  Arterioscler Thromb Vasc Biol. 2006;  26(12) 2594-2604
  • 18 Mause S F, von Hundelshausen P, Zernecke A, Koenen R R, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium.  Arterioscler Thromb Vasc Biol. 2005;  25(7) 1512-1518
  • 19 Frenette P S, Denis C V, Weiss L et al.. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo.  J Exp Med. 2000;  191(8) 1413-1422
  • 20 Frenette P S, Johnson R C, Hynes R O, Wagner D D. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin.  Proc Natl Acad Sci U S A. 1995;  92(16) 7450-7454
  • 21 Massberg S, Enders G, Leiderer R et al.. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin.  Blood. 1998;  92(2) 507-515
  • 22 Romo G M, Dong J F, Schade A J et al.. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin.  J Exp Med. 1999;  190(6) 803-814
  • 23 da Costa Martins P, García-Vallejo J J, van Thienen J V et al.. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium.  Arterioscler Thromb Vasc Biol. 2007;  27(5) 1023-1029
  • 24 Yan L, Zucker S, Toole B P. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression.  Thromb Haemost. 2005;  93(2) 199-204
  • 25 Schmidt R, Bültmann A, Fischel S et al.. Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes.  Circ Res. 2008;  102(3) 302-309
  • 26 Seizer P, Borst O, Langer H F et al.. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction.  Thromb Haemost. 2009;  101(4) 682-686
  • 27 Kato N, Yuzawa Y, Kosugi T et al.. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion.  J Am Soc Nephrol. 2009;  20(7) 1565-1576
  • 28 Gawaz M, Neumann F J, Dickfeld T et al.. Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction.  Circulation. 1997;  96(6) 1809-1818
  • 29 Bombeli T, Schwartz B R, Harlan J M. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha.  J Exp Med. 1998;  187(3) 329-339
  • 30 André P, Denis C V, Ware J et al.. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins.  Blood. 2000;  96(10) 3322-3328
  • 31 Jurk K, Clemetson K J, de Groot P G et al.. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor.  FASEB J. 2003;  17(11) 1490-1492
  • 32 Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation.  Nat Rev Immunol. 2007;  7(6) 467-477
  • 33 Babinska A, Kedees M H, Athar H et al.. F11-receptor (F11R/JAM) mediates platelet adhesion to endothelial cells: role in inflammatory thrombosis.  Thromb Haemost. 2002;  88(5) 843-850
  • 34 Ostermann G, Fraemohs L, Baltus T et al.. Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium: inhibition by soluble JAM-A.  Arterioscler Thromb Vasc Biol. 2005;  25(4) 729-735
  • 35 Babinska A, Azari B M, Salifu M O et al.. The F11 receptor (F11R/JAM-A) in atherothrombosis: overexpression of F11R in atherosclerotic plaques.  Thromb Haemost. 2007;  97(2) 272-281
  • 36 Henn V, Slupsky J R, Gräfe M et al.. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.  Nature. 1998;  391(6667) 591-594
  • 37 Gawaz M, Brand K, Dickfeld T et al.. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis.  Atherosclerosis. 2000;  148(1) 75-85
  • 38 Massberg S, Brand K, Grüner S et al.. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.  J Exp Med. 2002;  196(7) 887-896
  • 39 Theilmeier G, Michiels C, Spaepen E et al.. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia.  Blood. 2002;  99(12) 4486-4493
  • 40 Huo Y, Schober A, Forlow S B et al.. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.  Nat Med. 2003;  9(1) 61-67
  • 41 Dole V S, Bergmeier W, Mitchell H A, Eichenberger S C, Wagner D D. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin.  Blood. 2005;  106(7) 2334-2339
  • 42 Wang Y, Sakuma M, Chen Z et al.. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury.  Circulation. 2005;  112(19) 2993-3000
  • 43 Santoso S, Sachs U J, Kroll H et al.. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1.  J Exp Med. 2002;  196(5) 679-691
  • 44 Langer H F, Daub K, Braun G et al.. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro.  Arterioscler Thromb Vasc Biol. 2007;  27(6) 1463-1470
  • 45 Hristov M, Zernecke A, Liehn E A, Weber C. Regulation of endothelial progenitor cell homing after arterial injury.  Thromb Haemost. 2007;  98(2) 274-277
  • 46 Langer H, May A E, Daub K et al.. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro.  Circ Res. 2006;  98(2) e2-e10
  • 47 Schober A. Chemokines in vascular dysfunction and remodeling.  Arterioscler Thromb Vasc Biol. 2008;  28(11) 1950-1959
  • 48 Ceradini D J, Kulkarni A R, Callaghan M J et al.. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.  Nat Med. 2004;  10(8) 858-864
  • 49 Schober A, Knarren S, Lietz M, Lin E A, Weber C. Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice.  Circulation. 2003;  108(20) 2491-2497
  • 50 Zernecke A, Schober A, Bot I et al.. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells.  Circ Res. 2005;  96(7) 784-791
  • 51 Karshovska E, Zernecke A, Sevilmis G et al.. Expression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice.  Arterioscler Thromb Vasc Biol. 2007;  27(12) 2540-2547
  • 52 Jin D K, Shido K, Kopp H G et al.. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes.  Nat Med. 2006;  12(5) 557-567
  • 53 Massberg S, Konrad I, Schürzinger K et al.. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.  J Exp Med. 2006;  203(5) 1221-1233
  • 54 Stellos K, Langer H, Daub K et al.. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells.  Circulation. 2008;  117(2) 206-215
  • 55 Hristov M, Zernecke A, Bidzhekov K et al.. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury.  Circ Res. 2007;  100(4) 590-597
  • 56 von Hundelshausen P, Weber K S, Huo Y et al.. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium.  Circulation. 2001;  103(13) 1772-1777
  • 57 Baltus T, von Hundelshausen P, Mause S F, Buhre W, Rossaint R, Weber C. Differential and additive effects of platelet-derived chemokines on monocyte arrest on inflamed endothelium under flow conditions.  J Leukoc Biol. 2005;  78(2) 435-441
  • 58 Schober A, Manka D, von Hundelshausen P et al.. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury.  Circulation. 2002;  106(12) 1523-1529
  • 59 Zernecke A, Liehn E A, Fraemohs L et al.. Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice.  Arterioscler Thromb Vasc Biol. 2006;  26(2) e10-e13
  • 60 Veillard N R, Kwak B, Pelli G et al.. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice.  Circ Res. 2004;  94(2) 253-261
  • 61 Braunersreuther V, Zernecke A, Arnaud C et al.. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice.  Arterioscler Thromb Vasc Biol. 2007;  27(2) 373-379
  • 62 Sachais B S, Turrentine T, Dawicki McKenna J M, Rux A H, Rader D, Kowalska M A. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice.  Thromb Haemost. 2007;  98(5) 1108-1113
  • 63 Simeoni E, Winkelmann B R, Hoffmann M M et al.. Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis.  Eur Heart J. 2004;  25(16) 1438-1446
  • 64 Böger C A, Fischereder M, Deinzer M et al.. RANTES gene polymorphisms predict all-cause and cardiac mortality in type 2 diabetes mellitus hemodialysis patients.  Atherosclerosis. 2005;  183(1) 121-129
  • 65 von Hundelshausen P, Koenen R R, Sack M et al.. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium.  Blood. 2005;  105(3) 924-930
  • 66 Koenen R R, von Hundelshausen P, Nesmelova I V et al.. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice.  Nat Med. 2009;  15(1) 97-103
  • 67 Combadière C, Potteaux S, Rodero M et al.. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice.  Circulation. 2008;  117(13) 1649-1657
  • 68 Johnson Z, Kosco-Vilbois M H, Herren S et al.. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system.  J Immunol. 2004;  173(9) 5776-5785
  • 69 Braunersreuther V, Steffens S, Arnaud C et al.. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice.  Arterioscler Thromb Vasc Biol. 2008;  28(6) 1090-1096
  • 70 Anders H J, Frink M, Linde Y et al.. CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration.  J Immunol. 2003;  170(11) 5658-5666
  • 71 Sørensen L N, Paludan S R. Blocking CC chemokine receptor (CCR) 1 and CCR5 during herpes simplex virus type 2 infection in vivo impairs host defence and perturbs the cytokine response.  Scand J Immunol. 2004;  59(3) 321-333
  • 72 Karshovska E, Zagorac D, Zernecke A, Weber C, Schober A. A small molecule CXCR4 antagonist inhibits neointima formation and smooth muscle progenitor cell mobilization after arterial injury.  J Thromb Haemost. 2008;  6(10) 1812-1815
  • 73 Zernecke A, Bot I, Djalali-Talab Y et al.. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis.  Circ Res. 2008;  102(2) 209-217

Dr. Rory R KoenenPh.D. 

Institute for Molecular Cardiovascular Research, Universitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule

Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany

Email: rkoenen@ukaachen.de

    >