Exp Clin Endocrinol Diabetes 2009; 117(10): 573-576
DOI: 10.1055/s-0029-1234087
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Evaluation of Beta Cell Dysfunction by Mixed Meal Tolerance Test and Oral L-arginine in Patients with Newly Diagnosed Type 2 Diabetes Mellitus

M. Ozbek1 , M. Erdogan1 , M. Karadeniz1 , S. Cetinkalp1 , A. G. Ozgen1 , F. Saygili1 , C. Yilmaz1 , M. Tuzun1
  • 1Ege University Faculty of Medicine, Department of Endocrinology and Metabolism, Izmir
Further Information

Publication History

received 22.04.2007 first decision 17.10.2007

accepted 16.07.2009

Publication Date:
18 November 2009 (online)

Abstract

Background and aims: Defective insulin secretion is required for the development of frank diabetes mellitus. We evaluated the secretory response of pancreatic beta cells after the ingestion of mixed meal plus oral L-arginine in newly diagnosed type 2 diabetic patients.

Materials and methods: Twenty-four newly diagnosed type 2 diabetic patients were enrolled in this study. All patients were ingested a mixed meal of 553 kcal. Serum insulin levels were measured at time 0 just before the mixed meal and at 1, 2, 3, 4 and 5 h after the ingestion of the mixed meal. Twenty-four hours later, all patients ingested mixed meal followed by oral 8 g L-Arginine, and insulin levels were again measured at 0, 1, 2, 3, 4 and 5 h after the ingestion of the meal.

Results: Insulin levels reached to peak values at the 2nd hour, and decreased to baseline levels at the 5th hour measurements both after the ingestion of mixed meal only and after the ingestion of mixed meal plus oral L-Arginine. First and 2nd hour insulin levels were significantly higher after the ingestion of mixed meal plus oral L-Arginine.

Conclusion: In this study we used for the first time the combination of oral L-arginine with mixed meal test to evaluate the beta cell dysfunction in type 2 diabetic patients. Increments regarding serum insulin levels after the ingestion of mixed meal plus oral L-Arginine suggest that oral L-Arginine could be benefical for the evaluation of beta cell function and secretory defects.

References

  • 1 King H, Rewers M. WHO Ad Hoc Diabetes reporting Group . Global estimates for prevelance of diabetes mellitus and impaired glucose tolerance in adults.  Diabetes Care. 1993;  16 157-177
  • 2 Davies MJ, Rayman G, Gray IP. et al . Insulin deficiency and increased plasma concentration of intact and 32/33 split proinsulin in subjects with impaired glucose tolerance.  Diabet Med. 1993;  10 313-320
  • 3 Hamman R. Genetic and enviromental determinants of non-insulin-dependent diabetes mellitus (NIDDM).  Diabetes Metab Rev. 1992;  8 287-338
  • 4 Hypertension in Diabetes Sudy (HDS) I. . Prevelance of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications.  J hypertens. 1993;  11 309-317
  • 5 Hypertension in Diabetes Study (HDS) II. . Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients.  J Hypertens. 1993;  11 319-325
  • 6 Turner RC, Millns H, Neil HA. et al . Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23).  BMJ. 1998;  316 823-828
  • 7 Henry RR. Insulin resistance: From predisposing factor to therapeutic target in type 2 diabetes.  Clin Ther. 2003;  25 ((suppl B)) B47-B63
  • 8 Ridker PM, Rifai N, Stampfer MJ. et al . Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men.  Circulation. 2000;  101 1767-1772
  • 9 Reaven GM. Pathophysiology of insulin resistance in human disease.  Physiol Rev. 1995;  75 473-486
  • 10 Henry RR. Type 2 Diabetes care. The role of insulin-sensitizing agents and practical implications for cardiovascular disease prevention.  Am J Med. 1998;  105 ((1 A)) S20-S26
  • 11 Warran JH, Martin BC, Krolewski AS. et al . Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic patients.  Ann Intern Med. 1990;  113 909-915
  • 12 O’Rahilly S. Science, medicine and the future. Non-insulin dependent diabetes mellitus: the gathering storm.  BMJ. 1997;  314 955-959
  • 13 Lillioja S, Mott DM, Howard BY. et al . Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in pima indians.  N Engl J Med. 1988;  318 1217-1225
  • 14 Haffner SM, Stern MP, Dunn J. et al . Diminished insulin sensitivity and increased insulin response in nonobese, nondiabetic mexican americans.  Metabolism. 1990;  39 842-847
  • 15 Despres JP, Lamarche B, Mauriege P. et al . Hyperinsulinemia as an independent risk factor for ischemic heart disease.  N Engl J Med. 1996;  334 952-957
  • 16 DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance.  Am J Physiol. 1979;  237 ((3)) E214-E223
  • 17 Toffolo G, De Grandi F, Cobelli C. Estimation of beta-cell sensitivity from intravenous glucose tolerance test C-peptide data. Knowledge of the kinetics avoids errors in modeling the secretion.  Diabetes. 1995;  44 845-854
  • 18 Piatti PM, Monti LD, Caumo A. et al . The continuous low dose insulin and glucose infusion test: a simplified and accurate method for the evaluation of insulin sensitivity and insulin secretion in population studies.  J Clin Endocrinol Metab. 1995;  80 ((1)) 34-40
  • 19 Rocic B, Lovrencic MV, Poje M. et al . Effect of creatine on the pancreatic beta-cell.  Exp Clin Endocrinol Diabetes. 2007;  115 ((1)) 29-32
  • 20 Aksoy DY, Yürekli PBS, Yildiz BO. et al . Prevalence of glutamic acid decarboxylase antibody positivity and its association with insulin secretion and sensitivity in autoimmune thyroid disease: A pilot study.  Exp Clin Endocrinol Diabetes. 2006;  114 ((8)) 412-416
  • 21 Hovorka R, Chassin L, Luzio SD. et al . Pancreatic beta cell responsiveness during meal tolerance test: model assesment in normal subjects and subjects with newly diagnosed noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1998;  83 744-750
  • 22 Thorens B. Glucagon-like-peptide-1 and control of insulin secretion.  Diabetes Metabolism. 1995;  21 311-318
  • 23 Nauck MA, Homberger E, Siegel EG. et al . Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses.  J Clin Endocrinol Metab. 1986;  63 492-498
  • 24 Nauck MA, Bartels E, Orskov C. et al . Additive insulinotropic effects of exogenous synthetic human gastric-inhibitory polypeptide and GLP-1 (7–36) amide infused at near-physiological insulinotropic hormone and glucose contrentrations.  J Clin Endocrinol Metab. 1993;  76 912-917
  • 25 Blachier F, Mourtada A, Sener A. et al . Stimulus-secretion coupling of arginine – induced insulin release uptake of metabolised and nonmetabolised cationic aminoacids by pancreatic islets.  Endocrinology. 1989;  124 134-141
  • 26 Schmidt HHHW, Warner TD, Ishii K. et al . Insulin secretion from pancreatic beta cells caused by l-arginine-derived nitrogen oxides.  Science. 1992;  255 721-723
  • 27 Marena S, Montegrosso G, De Michielli F. et al . Comparison of the metabolic effects of mixed-meal and standart oral glucose tolerance test on glucose, insulin and c-peptide response in healthy, impaired glucose tolerance, mild and severe non-insulin dependent diabetic subjects.  Acta Diabetol (abstract). 1992;  29 ((1)) 29-33
  • 28 Katleen H, Zhidang I, Van S. et al . Prolonged exposure of human beta cells to high glucose increases their release of proinsulin during acute stimulation with glucose or arginine.  J Clin Endocrinol Metab. 1999;  84 386-390

Correspondence

M. ErdoganMD 

Ege University Medical School

Endocrinology and Metabolism Disease

35100 Izmir

Turkey

Phone: 90/322/233 61 55

Fax: 90/232/373 77 01

Email: drmerdogan61@yahoo.com

    >