Introduction
Autism Spectrum Disorder (ASD) represents a set of chronic and severe neurodevelopmental disorders of childhood characterized by qualitative impairments in social interaction and communication skills, accompanied by repetitive and stereotyped behaviors and interests. These symptoms manifest in the first 3 years of age and show a lifelong persistence (APA
1994). The prevalence of ASD is estimated to be approximately 1 in 150, with a male to female ratio of 4:1 (Chakrabarti and Fombonne
2005; Veenstra-VanderWeele and Cook
2004). A more recent study even indicated a prevalence rate of 1 in 100 (Baird et al.
2006). Family and twin studies have shown that ASD has a strong heritable component, but the pattern of inheritance is not straightforward and is likely to involve complex interactions between multiple genes and possibly environmental insults (Zhao et al.
2007).
Despite the significant heritability, identifying specific causal relationships has been daunting due to genetic complexity and phenotypic variation (Geschwind
2008). Such heterogeneity in autism has led researchers to seek for reliable diagnostic tools to identify genetically more homogeneous subgroups to reduce the complexity of the task of identifying influential genes. Most studies have used variations in functional or behavioral measures as the basis for the stratification (Geschwind
2008; Sebat et al.
2007; Klin et al.
2007), whereas others assessed the contribution of de novo copy number variants (CNVs) to ASD in a unique large sample, namely, the Simon simplex collection (Fischbach and Lord
2010; Levy et al.
2011; State and Levitt
2011).
The study of head circumference and other morphological characteristics has appeared in more recent autism research as a way of stratifying more homogenous subgroups. Excessive head growth found in the first year of life, in children later diagnosed with autism, has been one of the most promising quantitative traits (Miles et al.
2000; Sacco et al.
2007). As to other morphological characteristics, an excess of minor physical anomalies (MPAs) in autistic individuals received specific attention (Steg and Rapoport
1975; Gualtieri et al.
1982; Hardan et al.
2006; Miles et al.
2008; Ozgen et al.
2010a,
b). Recently, the largest study to date comparing morphological features in 224 autistic patients and 224 matched-pairs controls, showed that the morphological abnormalities were significantly more prevalent in patients with autism than in the normal control group and 48 morphological features distinguished patients from controls (Ozgen et al.
2010a,
b). However, although there is now robust evidence for the association between morphological features and autism no studies, to date, have directly assessed the utility of various morphological indices in characterizing ASD patients. The utility of a test is defined by its sensitivity and specificity. The specificity of an index reflects the likelihood that an individual belonging to a comparison group is identified as not abnormal on the index (a true negative), while the sensitivity of an index reflects the likelihood that an individual that should be classified as belonging to the abnormal group is identified correctly (a true positive). The sensitivity and specificity of an index for differentiating a diagnostic group from a comparison group are always a trade-off, i.e., if one chooses a cut-off point that increases sensitivity, the specificity will be decreased, and vice versa. The receiver operator characteristic (ROC) analysis is used to characterize sensitivity and specificity across the full range of potential cut-off points. As we are interested in the overall performance of the measures we present the results in the form of the ROC (Hanley and McNeil
1982; Wickens
2002).
However, to date, there have been few systematic attempts to use the aggregated information of these multiple markers of ASD. As part of a larger effort to investigate morphological features in ASD, we performed additional analysis on the data of our recently published study in 224 children with ASD and 224 matched-pairs controls and focused specifically on the potential value of exploring these features in ASD samples and attempted to determine the value of morphological features in distinguishing ASD patients from normal controls. In this study, we use ROC analysis to establish that aggregate measures of morphological abnormalities offer a large amount of information regarding ASD, and then use recursive partitioning, a data mining technique, to establish and validate a parsimonious clinical decision rule.
Discussion
In this study we further analyzed the findings of our previously published study comparing morphological features in a large cohort of autistic children and matched-paired controls. Here, we sought to determine the sensitivity and specificity indices based on these morphological features in ASD, in comparison with normal control subjects (Fig.
1a–d). This is the first large scale study to explicitly examine the predictive value of morphological features in patients with autism. Several interesting findings emerged from this study.
ROC analysis indicated that the higher prevalence of dysmorphic features in ASD as measured on the whole scale of the morphological features as well as well as on the subscales of major and minor abnormalities is a powerful predictor, which showed extraordinarily high specificity and sensitivity for detecting ASD.
By employing recursive partitioning, we have identified specific morphological features whose expression may be useful diagnostically in discriminating ASD and control subjects, as shown in Fig.
2. These new findings provide a proof of principle and may have the potential to become the basis for the development of diagnostic or prognostic tests. Of the morphological measures used in this investigation, asymmetry of the face, multiple hair whorls and prominent forehead were most specific to ASD patients. The topographical distribution of dysmorphology in our study is consistent with the literature. Other clinical researchers also proposed to use dysmorphology as a tool to delineate heterogeneity in autism by looking for biologically based phenotypes found in consistent proportions of ASD individuals (Miles et al.
2008).
Asymmetry of the face in ASD has been recently documented in a recent 3D morphology study (Hammond et al.
2008). However, asymmetry of the face has also been found in patients with schizophrenia (Weinberg et al.
2007). As we confirmed the higher rate of morphological features in autistic patients as compared to normal controls, we are faced with new challenging questions.
First, why do autistic patients have higher rates of morphological features? Apparently, a common genetic vulnerability for developing autism is reflected in morphological features (Rzhetsky et al.
2007). Several developmental genes have recently been identified that play a paramount role in shaping body structures. Moreover, new insights into craniofacial morphogenesis have indicated that a rapidly increasing number of genes are known to regulate cerebrocraniofacial development (LaMantia
1999). It can be speculated that the genes that determine the craniofacial morphology overlap with candidate genes for autistic disorders. Alternatively, the observed correlations between specific morphological features and autism might be the effects of temporal exposure of different anlage to as yet undefined factors that impact growth and development.
Although our findings indicated that morphological features could have a predictive value for the diagnosis of autism, an intriguing question concerns their specificity concerning ASD subtypes and other neurodevelopmental psychiatric disorders. Although we predicted that morphological features should be able to classify autistic patients into different subgroups, our data did not support this hypothesis. One reason could be that patients were not selected on the basis of these different subtypes and therefore that not all subtypes were equally prevalent in our study population. Additionally, characterization based on DSM IV subtypes may not relate to underlying differences in etiology. Larger studies that are designed specifically to assess morphological features in different autistic subpopulations are needed to specifically investigate this issue. Another question concerns whether morphological features found in autism differ from those found in other disorders. In a recent meta-analysis, a higher prevalence of morphological features was also established in schizophrenia (Weinberg et al.
2007). Do morphological features seen in autism have a different etiology than those in schizophrenia, or do disorders associated with morphological features share a common etiological basis with schizophrenia and autism? Some evidence for such an overlap comes from the observation that individuals with ASD may also be at greater risk for developing schizophrenia (Murphy and Owen
1996; Esterberg et al.
2008). Emerging studies have described the possible links between the two disorders by means of the genetic overlapping (Carroll and Owen
2009; Gejman et al.
2011). Findings indicating overlapping markers could provide important clues regarding the underlying genetic bases of these disorders.
This study had some limitations that should be borne in mind when interpreting the results of this study. There have been several approaches to delineate more homogenous subgroups within autism, and those attempts have also been influenced by diagnostic bias as shown by the Simons Simplex Collection analysis. A huge limitation originates from the complex behavioral phenotype of ASDs. Due to the multifactorial nature of the disease, each individual aberration has a modest effect, and the gene–gene interaction and/or gene-environment interaction may attribute to the observed phenotype. Currently, we do not have a coherent understanding of the relationship of genotype and phenotype in ASDs (State and Levitt
2011). Moreover, robust diagnostic specificity is often lacking for endophenotypes and reflects the fact that different disorders may share genes, and also share partially overlapping neural substrate dysfunction and clinical features (Braff et al.
2007).
Second, as morphologic examination requires in-person examination, it is generally not possible for the raters to be blind to diagnosis. Although we made every attempt to ensure that the assessments were carried out blindly to diagnosis, we acknowledge that blinding may not have been complete. However, to prevent observer bias, 11 % of controls and 10 % of patients were scored independently by two observers, resulting in very high kappa scores. Additionally there were no prior hypotheses as of which morphological abnormalities should be associated with autism, and the finding that some morphological abnormalities were not associated at all with the diagnosis, or were even more frequent in controls than in patients suggests that there was no general rater bias.
Third, we used typically developing children as a comparison group in this study. Future research may extend the findings of this study by investigating non-ASD neurodevelopmental disorders such as schizophrenia, ADHD and bipolar disorders.
Fourth, in order to have a homogenous sample we limited our study population to Caucasian patients and controls; because ethnicity can influence the prevalence of morphological abnormalities. Future studies are needed to establish similar norms for other ethnic groups. Likewise, we restricted ourselves to non-mentally retarded, high functioning ASD patients. Therefore, we cannot generalize our findings to mentally retarded ASD patients.
Despite these limitations, the present study provides evidence that morphological features are significantly increased in the patients with autism and that some unknown prenatal biological mechanism is likely responsible for producing these anomalies which may yield further knowledge about the developmental origins of the disease. If independently replicated, the findings have potential utility for early detection of ASD.