Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

01-08-2022

Predicting problematic smartphone use based on early maladaptive schemas by using machine learning classification algorithms

Auteur: Ibrahim Arpaci

Gepubliceerd in: Journal of Rational-Emotive & Cognitive-Behavior Therapy

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This study aimed to predict problematic smartphone use based on early maladaptive schemas (EMS) and five schema domains. Machine learning algorithms were used to test the predictive models based on data collected from 1000 smartphone users. The study tested the predictive models by employing six machine learning classification algorithms (i.e., Bayes Net, SMO, IBk, Multi-Class Classifier, Decision Table, and Random Forest). The first predictive model was built on 14 schemas and tested by using 10-fold cross validation method. Results indicated that Multi-Class Classifier achieve a better prediction than other classifiers in classifying low-risk and high-risk smartphone users based on 14 schemas with an accuracy of 68.2%. The second model, which was built on five schema domains, was tested by using the best performance algorithm. Multi-Class Classifier predicted the users based on schemas related to the “impaired autonomy and performance” domain (i.e., “enmeshment/dependence, vulnerability to harm, and failure”) with an accuracy of 66.2%. Further, the classifier predicted the users based on schemas related to the “disconnection and rejection” domain (i.e., “abandonment, emotional deprivation, defectiveness, and social isolation/mistrust”) with an accuracy of 65.2%. Results emphasize the significance of EMS in predicting problematic smartphone use.
Literatuur
go back to reference APA. (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth ed.). Arlington, VA: American Psychiatric Publishing APA. (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth ed.). Arlington, VA: American Psychiatric Publishing
go back to reference Ballestar-Tarín, M. L., Simó-Sanz, C., Chover-Sierra, E., Saus-Ortega, C., Casal-Angulo, M. D. C., & Martínez-Sabater, A. (2020). Self-perception of dependence as an indicator of smartphone addiction-establishment of a cutoff point in the SPAI–Spain inventory. International Journal of Environmental Research and Public Health, 17(11), 3838. DOI: https://​doi.​org/​10.​3390/​ijerph17113838 CrossRefPubMedCentral Ballestar-Tarín, M. L., Simó-Sanz, C., Chover-Sierra, E., Saus-Ortega, C., Casal-Angulo, M. D. C., & Martínez-Sabater, A. (2020). Self-perception of dependence as an indicator of smartphone addiction-establishment of a cutoff point in the SPAI–Spain inventory. International Journal of Environmental Research and Public Health, 17(11), 3838. DOI: https://​doi.​org/​10.​3390/​ijerph17113838 CrossRefPubMedCentral
go back to reference Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 104, 1–10. https://​doi.​org/​10.​1016/​j.​neubiorev.​2019.​06.​032 CrossRef Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 104, 1–10. https://​doi.​org/​10.​1016/​j.​neubiorev.​2019.​06.​032 CrossRef
go back to reference Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2015). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15, 3133–3181 Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2015). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15, 3133–3181
go back to reference Soygüt, G., Karaosmanoǧlu, A., & Çakir, Z. (2009). Assessment of early maladaptive schemas: A psychometric study of the Turkish Young schema questionnaire-short form-3. Turk Psikiyatri Dergisi, 20(1), 75–84 PubMed Soygüt, G., Karaosmanoǧlu, A., & Çakir, Z. (2009). Assessment of early maladaptive schemas: A psychometric study of the Turkish Young schema questionnaire-short form-3. Turk Psikiyatri Dergisi, 20(1), 75–84 PubMed
go back to reference Tabachnick, B. G., & Fidell, L. S. (2013). Using Multivariate Statistics (6th ed.). Northridge, LA: California State University Tabachnick, B. G., & Fidell, L. S. (2013). Using Multivariate Statistics (6th ed.). Northridge, LA: California State University
go back to reference Young, J. E. (1995). Cognitive therapy for personality disorders: A schema-focused approach. Sarasota, FL: Professional Resource Exchange Young, J. E. (1995). Cognitive therapy for personality disorders: A schema-focused approach. Sarasota, FL: Professional Resource Exchange
go back to reference Young, J. E., Klosko, J. S., & Weishaar, M. E. (2003). Schema therapy: A practitioner’s guide. New York, NY: Guilford Press Young, J. E., Klosko, J. S., & Weishaar, M. E. (2003). Schema therapy: A practitioner’s guide. New York, NY: Guilford Press
Metagegevens
Titel
Predicting problematic smartphone use based on early maladaptive schemas by using machine learning classification algorithms
Auteur
Ibrahim Arpaci
Publicatiedatum
01-08-2022
Uitgeverij
Springer US
Gepubliceerd in
Journal of Rational-Emotive & Cognitive-Behavior Therapy
Print ISSN: 0894-9085
Elektronisch ISSN: 1573-6563
DOI
https://doi.org/10.1007/s10942-022-00450-6