Skip to main content
Top

2019 | OriginalPaper | Hoofdstuk

3. Plasticiteit

Auteur : Dr. Ben van Cranenburgh

Gepubliceerd in: Neurorevalidatie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Plasticiteit is veranderbaarheid: een fundamentele eigenschap van ieder neuron en van het zenuwstelsel als geheel. Het is de biologische basis van ontwikkeling, leren en herstel. Plasticiteit van hersensystemen verklaart dat ieder brein individueel uniek is. Plasticiteit zit overal: van moleculen tot gedrag, op ieder neuraal niveau (perifeer, ruggenmerg, hersenen) en in ieder functioneel systeem. Het leren van een vingervaardigheid (bijv. handwerken) heeft zijn biologische basis in plastische veranderingen op ieder niveau: de neurale representaties van de betrokken vingers nemen toe (bijv. vingers van de linkerhand bij het leren vioolspelen). Een congenitaal blinde gebruikt zijn ‘visuele’ schors voor braille, een dove zijn ‘akoestische’ schors voor het begrijpen van gebarentaal: de zintuigsystemen ‘helpen’ elkaar. Zelfs nieuwvorming van neuronen is mogelijk; we weten alleen nog niet waarom en wanneer. Een gezond brein is plastisch en deze plasticiteit is tot op zekere hoogte te beïnvloeden, bijvoorbeeld door leerervaringen, omgevingsstructuur, lichamelijke activiteit.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Abraham, W., & Bear, M. (1996). Metaplasticity: The plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–130.PubMedCrossRef Abraham, W., & Bear, M. (1996). Metaplasticity: The plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–130.PubMedCrossRef
go back to reference Anderson, V., et al. (2011). Do children really recover better? Neurobehavioral plasticity after early brain insult. Brain 134(2011), 2197–2221.PubMedCrossRef Anderson, V., et al. (2011). Do children really recover better? Neurobehavioral plasticity after early brain insult. Brain 134(2011), 2197–2221.PubMedCrossRef
go back to reference Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509. Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509.
go back to reference Belleville, S., et al. (2011). Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134, 1623–1634.PubMedCrossRef Belleville, S., et al. (2011). Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134, 1623–1634.PubMedCrossRef
go back to reference Borel, L., et al. (2002). Deficits and recovery of head and trunk orientation and stabilization after unilateral vestibular loss. Brain, 125, 880–894.PubMedCrossRef Borel, L., et al. (2002). Deficits and recovery of head and trunk orientation and stabilization after unilateral vestibular loss. Brain, 125, 880–894.PubMedCrossRef
go back to reference Boyke, J., et al. (2008). Training-induced brain structure changes in the eldery. Journal of Neuroscience, 28, 7031–7035.PubMedCrossRef Boyke, J., et al. (2008). Training-induced brain structure changes in the eldery. Journal of Neuroscience, 28, 7031–7035.PubMedCrossRef
go back to reference Braun, A., et al. (2001a). The neural organization of discourse: An H2 15O-PET study of narrative production in English and American sign language. Brain, 124, 2028–2044.PubMedCrossRef Braun, A., et al. (2001a). The neural organization of discourse: An H2 15O-PET study of narrative production in English and American sign language. Brain, 124, 2028–2044.PubMedCrossRef
go back to reference Braun, C., et al. (2001b). Dynamic organization of the somatosensory cortex induced by motor activity. Brain, 124, 2259–2267.PubMedCrossRef Braun, C., et al. (2001b). Dynamic organization of the somatosensory cortex induced by motor activity. Brain, 124, 2259–2267.PubMedCrossRef
go back to reference Brem, A., & Sensi, S. (2018). Towards combinational approaches for preserving cognitive fitness in aging. Trends in Neurosciences, 41(12), 885–897. Brem, A., & Sensi, S. (2018). Towards combinational approaches for preserving cognitive fitness in aging. Trends in Neurosciences, 41(12), 885–897.
go back to reference Brenowitz, E., & Beecher, M. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neurosciences, 28. Brenowitz, E., & Beecher, M. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neurosciences, 28.
go back to reference Büchel, C. (1998). Functional neuroimaging studies of Braille reading: Cross-modal reorganization and its implications. Brain, 121, 1193–1194.PubMedCrossRef Büchel, C. (1998). Functional neuroimaging studies of Braille reading: Cross-modal reorganization and its implications. Brain, 121, 1193–1194.PubMedCrossRef
go back to reference Castro-Caldas, A., et al. (1998). The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 1053–1063.PubMedCrossRef Castro-Caldas, A., et al. (1998). The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 1053–1063.PubMedCrossRef
go back to reference Cooke, S., & Bliss, T. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRef Cooke, S., & Bliss, T. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRef
go back to reference Coras, R., et al. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunctions in humans. Brain, 133, 3359–3372.PubMedCrossRef Coras, R., et al. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunctions in humans. Brain, 133, 3359–3372.PubMedCrossRef
go back to reference Cotman, C. (Red.). (1978). Neuronal plasticity. New York: Raven. Cotman, C. (Red.). (1978). Neuronal plasticity. New York: Raven.
go back to reference Cotman, C., & Berchtold, N. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 6. Cotman, C., & Berchtold, N. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 6.
go back to reference Cotman, C., & Lynch, G. (1990). The neurobiology of learning and memory. In Eimas en Galaburda (1990). Zie daar. Cotman, C., & Lynch, G. (1990). The neurobiology of learning and memory. In Eimas en Galaburda (1990). Zie daar.
go back to reference Cotman, C., et al. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 465–470.CrossRef Cotman, C., et al. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 465–470.CrossRef
go back to reference Day, B., & Cole, J. (2002). Vestibular-evoked postural responses in the absence of somatosensory information. Brain, 125, 2081–2088.PubMedCrossRef Day, B., & Cole, J. (2002). Vestibular-evoked postural responses in the absence of somatosensory information. Brain, 125, 2081–2088.PubMedCrossRef
go back to reference De la Rosa, E., & De Pablo, F. (2000). Cell death in early neural development: Beyond the neurotrophic theory. Trends in Neurosciences, 23, 454–458.PubMedCrossRef De la Rosa, E., & De Pablo, F. (2000). Cell death in early neural development: Beyond the neurotrophic theory. Trends in Neurosciences, 23, 454–458.PubMedCrossRef
go back to reference Dierig, S. (1992). Extending the neuron doctrine: Carl Ludwig Schleich and his reflections on neuroglia at the inception of the neural-network concept in 1894. TINS 17(11), 449–52. Dierig, S. (1992). Extending the neuron doctrine: Carl Ludwig Schleich and his reflections on neuroglia at the inception of the neural-network concept in 1894. TINS 17(11), 449–52.
go back to reference Dieterich, M., et al. (2007). Evidence for cortical visual substitution of chronic vestibular failure (an fMRI study). Brain, 130, 2108–2116.PubMedCrossRef Dieterich, M., et al. (2007). Evidence for cortical visual substitution of chronic vestibular failure (an fMRI study). Brain, 130, 2108–2116.PubMedCrossRef
go back to reference Doucet, M., et al. (2006). Cross-modal reorganization and speech perception in cochlear implant users. Brain, 126, 3376–3383.CrossRef Doucet, M., et al. (2006). Cross-modal reorganization and speech perception in cochlear implant users. Brain, 126, 3376–3383.CrossRef
go back to reference Douglas Fields, R., & Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences, 19, 473–480.CrossRef Douglas Fields, R., & Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences, 19, 473–480.CrossRef
go back to reference Dunaevsky, A., & Mason, C. (2003). Spine motility: A means towards an end? Trends in Neurosciences, 26, 155.PubMedCrossRef Dunaevsky, A., & Mason, C. (2003). Spine motility: A means towards an end? Trends in Neurosciences, 26, 155.PubMedCrossRef
go back to reference Eggermont, J., & Roberts, L. (2004). The neuroscience of tinnitus. Trends in Neurosciences, 27, 676–682.PubMedCrossRef Eggermont, J., & Roberts, L. (2004). The neuroscience of tinnitus. Trends in Neurosciences, 27, 676–682.PubMedCrossRef
go back to reference Eimas, P., & Galaburda, A. (Red.). (1990). Neurobiology of cognition. Cambridge: MIT Press. Eimas, P., & Galaburda, A. (Red.). (1990). Neurobiology of cognition. Cambridge: MIT Press.
go back to reference Elbert, T., et al. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307.PubMedCrossRef Elbert, T., et al. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307.PubMedCrossRef
go back to reference Fetz, E., & Cheney, P. (1987). Functional relations between primate motor cortex cells and muscles: Fixed and flexible. In Porter (1987). Zie daar. Fetz, E., & Cheney, P. (1987). Functional relations between primate motor cortex cells and muscles: Fixed and flexible. In Porter (1987). Zie daar.
go back to reference Finger, S., & Stein, D. (1982). Brain damage and recovery. New York: Academic Press. Finger, S., & Stein, D. (1982). Brain damage and recovery. New York: Academic Press.
go back to reference Fisher, S., et al. (1997). Multiple overlapping processes underlying short-term synaptic enhancement. Trends in Neurosciences, 20, 170–177.PubMedCrossRef Fisher, S., et al. (1997). Multiple overlapping processes underlying short-term synaptic enhancement. Trends in Neurosciences, 20, 170–177.PubMedCrossRef
go back to reference Fortin, M., et al. (2008). Wayfinding in the blind: Larger hippocampal volume and supranormal spatial navigation. Brain, 131, 2995–3005.PubMedCrossRef Fortin, M., et al. (2008). Wayfinding in the blind: Larger hippocampal volume and supranormal spatial navigation. Brain, 131, 2995–3005.PubMedCrossRef
go back to reference Frey, U., & Morris, R. (1998). Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation. Trends in Neurosciences, 21, 181–188.PubMedCrossRef Frey, U., & Morris, R. (1998). Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation. Trends in Neurosciences, 21, 181–188.PubMedCrossRef
go back to reference Fu, M., & Zuo, Y. (2011). Experience-dependent structural plasticity in the cortex. Trends in Neuroscience, 34. Fu, M., & Zuo, Y. (2011). Experience-dependent structural plasticity in the cortex. Trends in Neuroscience, 34.
go back to reference Gazzaniga, M., et al. (2002). Cognitive neuroscience. 2nd ed. New York: Norton. Gazzaniga, M., et al. (2002). Cognitive neuroscience. 2nd ed. New York: Norton.
go back to reference Giaume, C., & McCarthy, K. (1996). Control of gap-junctional communication in astrocytic networks. Trends in Neurosciences, 19, 319–325.PubMedCrossRef Giaume, C., & McCarthy, K. (1996). Control of gap-junctional communication in astrocytic networks. Trends in Neurosciences, 19, 319–325.PubMedCrossRef
go back to reference Gothe, J., et al. (2002). Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain, 125, 479–490.PubMedCrossRef Gothe, J., et al. (2002). Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain, 125, 479–490.PubMedCrossRef
go back to reference Groen, H. (2014). Pogingen iets van het leven te maken. Amsterdam: Meulenhoff Groen, H. (2014). Pogingen iets van het leven te maken. Amsterdam: Meulenhoff
go back to reference Groen, H. (2016). Zolang er leven is. Amsterdam: Meulenhoff. Groen, H. (2016). Zolang er leven is. Amsterdam: Meulenhoff.
go back to reference Hebb, D. (1949). The organization of behaviour. New York: Wiley. Hebb, D. (1949). The organization of behaviour. New York: Wiley.
go back to reference Hillary, F., & Grafman, J. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385–400. Hillary, F., & Grafman, J. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385–400.
go back to reference Jenkins, W., & Merzenich, M. (1987). Reorganisation of neocortical representations after brain injury. In: Seil, F. e.a. (eds.): Neural Regeneration. Progr. in Brain Res. vol. 71, Amsterdam: Elsevier. Jenkins, W., & Merzenich, M. (1987). Reorganisation of neocortical representations after brain injury. In: Seil, F. e.a. (eds.): Neural Regeneration. Progr. in Brain Res. vol. 71, Amsterdam: Elsevier.
go back to reference Johnson, M. (Red.). (1993). Brain development and cognition. Cambridge: Blackwell. Johnson, M. (Red.). (1993). Brain development and cognition. Cambridge: Blackwell.
go back to reference Kaas, J. (Red.). (2001). The mutable brain. Amsterdam: Harwood. Kaas, J. (Red.). (2001). The mutable brain. Amsterdam: Harwood.
go back to reference Kandel, E., et al. (2000). Principles of neural science (4th ed.). New York: McGraw-Hill. Kandel, E., et al. (2000). Principles of neural science (4th ed.). New York: McGraw-Hill.
go back to reference Kaplan, M. (2001). Environment complexity stimulates visual cortex neurogenesis: Death of a dogma and a research career. Trends in Neurosciences, 24, 617.PubMedCrossRef Kaplan, M. (2001). Environment complexity stimulates visual cortex neurogenesis: Death of a dogma and a research career. Trends in Neurosciences, 24, 617.PubMedCrossRef
go back to reference Kapur, N. (1997). Injured brains of medical minds. Oxford: Oxford University Press. Kapur, N. (1997). Injured brains of medical minds. Oxford: Oxford University Press.
go back to reference Kasai, H., et al. (2003). Structure-stability-function relationships of dendritic spines. Trends in Neurosciences, 26, 360.PubMedCrossRef Kasai, H., et al. (2003). Structure-stability-function relationships of dendritic spines. Trends in Neurosciences, 26, 360.PubMedCrossRef
go back to reference Kempermann, G. (2008). The neurogenic reserve hypothesis: What is adult hippocampal neurogenesis good for? Trends in Neurosciences, 31, 163–169.PubMedCrossRef Kempermann, G. (2008). The neurogenic reserve hypothesis: What is adult hippocampal neurogenesis good for? Trends in Neurosciences, 31, 163–169.PubMedCrossRef
go back to reference Kempermann, G., & Gage, F. (1999). New nerve cells for the adult brain. Scientific American, 280, 48–53.PubMedCrossRef Kempermann, G., & Gage, F. (1999). New nerve cells for the adult brain. Scientific American, 280, 48–53.PubMedCrossRef
go back to reference Kiehn, O., & Tresh, M. (2002). Gap junctions and motor behavior. TINS 25(2). P.108–15. Kiehn, O., & Tresh, M. (2002). Gap junctions and motor behavior. TINS 25(2). P.108–15.
go back to reference King, A., & Moore, D. (1991). Plasticity of auditory maps in the brain. Trends in Neurosciences, 14, 31.PubMedCrossRef King, A., & Moore, D. (1991). Plasticity of auditory maps in the brain. Trends in Neurosciences, 14, 31.PubMedCrossRef
go back to reference Kokaia, Z., & Lindvall, O. (2003). Neurogenesis after ischaemic brain insults. Current Opinion in Neurobiology, 13, 127–132.PubMedCrossRef Kokaia, Z., & Lindvall, O. (2003). Neurogenesis after ischaemic brain insults. Current Opinion in Neurobiology, 13, 127–132.PubMedCrossRef
go back to reference Kolb, B. (1995). Brain plasticity and behaviour. Mahwah: Erlbaum. Kolb, B. (1995). Brain plasticity and behaviour. Mahwah: Erlbaum.
go back to reference Korak, K., et al. (2004). Changes in spinal cord architecture after brachial plexus injury in the newborn. Brain, 127, 1488–1495.PubMedCrossRef Korak, K., et al. (2004). Changes in spinal cord architecture after brachial plexus injury in the newborn. Brain, 127, 1488–1495.PubMedCrossRef
go back to reference Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends in Neuroscience, 36, 111.CrossRef Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends in Neuroscience, 36, 111.CrossRef
go back to reference Kramer, A., & Erickson, K. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Science, 11, 342–348.CrossRef Kramer, A., & Erickson, K. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Science, 11, 342–348.CrossRef
go back to reference Kujala, T., et al. (2000). Cross-modal reorganization of human cortical functions. Trends in Neurosciences, 23, 115–120.PubMedCrossRef Kujala, T., et al. (2000). Cross-modal reorganization of human cortical functions. Trends in Neurosciences, 23, 115–120.PubMedCrossRef
go back to reference Landau, W. (1998). Clinical neuromythology. And other arguments and essays, pertinent and impertinent. New York: Futura. Landau, W. (1998). Clinical neuromythology. And other arguments and essays, pertinent and impertinent. New York: Futura.
go back to reference Lappe, C., et al. (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. J.Neuroscience, 28, 9632–9.PubMedCrossRef Lappe, C., et al. (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. J.Neuroscience, 28, 9632–9.PubMedCrossRef
go back to reference Lazarini F., & Lledo P.M. (2011). Is adult neurogenesis essential for olfaction? Trends Neurosciences, 34 (1):20–30. Lazarini F., & Lledo P.M. (2011). Is adult neurogenesis essential for olfaction? Trends Neurosciences, 34 (1):20–30.
go back to reference Lee, H., et al. (2007). Visual speech circuits in profound acquired deafness: A possible role for latent multimodal connectivity. Brain, 130, 2929–2941.PubMedCrossRef Lee, H., et al. (2007). Visual speech circuits in profound acquired deafness: A possible role for latent multimodal connectivity. Brain, 130, 2929–2941.PubMedCrossRef
go back to reference Levi-Montalcini, R., et al. (1996). Nerve growth factor: From neurotrophin to neurokine. Trends in Neurosciences, 19, 514–520.PubMedCrossRef Levi-Montalcini, R., et al. (1996). Nerve growth factor: From neurotrophin to neurokine. Trends in Neurosciences, 19, 514–520.PubMedCrossRef
go back to reference Levin, H., & Grafman, J. (Red.). (2000). Cerebral reorganization of function after brain damage. Oxford: Oxford University Press. Levin, H., & Grafman, J. (Red.). (2000). Cerebral reorganization of function after brain damage. Oxford: Oxford University Press.
go back to reference Liu, Y., et al. (2007). Whole brain functional connectivity in the early blind. Brain, 130, 2085–2096.PubMedCrossRef Liu, Y., et al. (2007). Whole brain functional connectivity in the early blind. Brain, 130, 2085–2096.PubMedCrossRef
go back to reference Lledo, P., & Saghatelyan, A. (2005). Integrating new neurons into the adult olfactory bulb: Joining the network, life-death decisions, and the effects of sensory experience. Trends in Neuroscience, 28. Lledo, P., & Saghatelyan, A. (2005). Integrating new neurons into the adult olfactory bulb: Joining the network, life-death decisions, and the effects of sensory experience. Trends in Neuroscience, 28.
go back to reference Luria, A. (1963). Restoration of function after brain injury. Oxford: Pergamon. Luria, A. (1963). Restoration of function after brain injury. Oxford: Pergamon.
go back to reference Ma, Y., & Han, S. (2011). Neural representation of self-concept in sighted and congenitally blind adults. Brain, 134, 235–246.PubMedCrossRef Ma, Y., & Han, S. (2011). Neural representation of self-concept in sighted and congenitally blind adults. Brain, 134, 235–246.PubMedCrossRef
go back to reference MacSweeney, M., et al. (2002). Neural systems underlying British sign language and audio-visual English processing in native users. Brain, 125, 1583–1593.PubMedCrossRef MacSweeney, M., et al. (2002). Neural systems underlying British sign language and audio-visual English processing in native users. Brain, 125, 1583–1593.PubMedCrossRef
go back to reference MacSweeney, M., et al. (2008). The signing brain: The neurobiology of sign language. Trends in Cognitive Sciences, 12, 432–440.PubMedCrossRef MacSweeney, M., et al. (2008). The signing brain: The neurobiology of sign language. Trends in Cognitive Sciences, 12, 432–440.PubMedCrossRef
go back to reference Maguire, E., et al. (2000). Navigation-related structural changes in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.PubMedPubMedCentralCrossRef Maguire, E., et al. (2000). Navigation-related structural changes in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.PubMedPubMedCentralCrossRef
go back to reference Maren, S. (1999). Long-term potentiation in the amygdala: A mechanism for emotional learning and memory. Trends in Neurosciences, 22, 561.PubMedCrossRef Maren, S. (1999). Long-term potentiation in the amygdala: A mechanism for emotional learning and memory. Trends in Neurosciences, 22, 561.PubMedCrossRef
go back to reference May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 16. May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 16.
go back to reference Montgomery, J.M., & Madison, D.V. (2004). Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosciences, 27, (12):744–50. Montgomery, J.M., & Madison, D.V. (2004). Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosciences, 27, (12):744–50.
go back to reference Moore, C., & Schady, W. (2000). Investigation of the functional correlates of reorganization within the human somatosensory cortex. Brain, 123, 1883–1895.PubMedCrossRef Moore, C., & Schady, W. (2000). Investigation of the functional correlates of reorganization within the human somatosensory cortex. Brain, 123, 1883–1895.PubMedCrossRef
go back to reference Neumann, H., et al. (2009). Debris clearance by microglia: An essential link between degeneration and regeneration. Brain, 132, 288–295.PubMedCrossRef Neumann, H., et al. (2009). Debris clearance by microglia: An essential link between degeneration and regeneration. Brain, 132, 288–295.PubMedCrossRef
go back to reference Pantev, C. (2001). Functional organization and plasticity of the human auditory cortex. Neurologie & Rehabilitation, 7, 76. Pantev, C. (2001). Functional organization and plasticity of the human auditory cortex. Neurologie & Rehabilitation, 7, 76.
go back to reference Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116, 39–52.PubMedCrossRef Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116, 39–52.PubMedCrossRef
go back to reference Peretz, I., & Zatorre, R. (2003). The cognitive neuroscience of music. Oxford: Oxford University Press.CrossRef Peretz, I., & Zatorre, R. (2003). The cognitive neuroscience of music. Oxford: Oxford University Press.CrossRef
go back to reference Pevny, L., & Rao, M. (2003). The stem-cell menargie. TINS 26(7). P. 351–9. Pevny, L., & Rao, M. (2003). The stem-cell menargie. TINS 26(7). P. 351–9.
go back to reference Porter, R., & Ciba foundation symposium 132. (1987). Motor areas of the cerebral cortex. Chichester: Wiley. Porter, R., & Ciba foundation symposium 132. (1987). Motor areas of the cerebral cortex. Chichester: Wiley.
go back to reference Porter, R., & Lemon, R. (1993). Corticospinal function and voluntary movement. Oxford: Clarendon Press. Porter, R., & Lemon, R. (1993). Corticospinal function and voluntary movement. Oxford: Clarendon Press.
go back to reference Pourrier, S., et al. (2010). Three cases of referred sensation in traumatic nerve injury of the hand: Implications for understanding central nervous system reorganization. Journal of Rehabilitation Medicine, 42, 357–361.PubMedCrossRef Pourrier, S., et al. (2010). Three cases of referred sensation in traumatic nerve injury of the hand: Implications for understanding central nervous system reorganization. Journal of Rehabilitation Medicine, 42, 357–361.PubMedCrossRef
go back to reference Ptito, M., et al. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128, 606–614.PubMedCrossRef Ptito, M., et al. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128, 606–614.PubMedCrossRef
go back to reference Raichlen, D., & Alexander, G. (2017). Adaptive capacity: An evolutionary neuroscience model linking exercise, cognition and brain health. Trends in Neurosciences, 40(7), 408–421. Raichlen, D., & Alexander, G. (2017). Adaptive capacity: An evolutionary neuroscience model linking exercise, cognition and brain health. Trends in Neurosciences, 40(7), 408–421.
go back to reference Ramachandran, V. (1995) In: Julesz, B. en Kovacs, I. Maturational windows and adult cortical plasticity. Addison-Wesley Publ., Reading. Ramachandran, V. (1995) In: Julesz, B. en Kovacs, I. Maturational windows and adult cortical plasticity. Addison-Wesley Publ., Reading.
go back to reference Ramachandran, V., & Blakeslee, S. (1998). Phantoms in the brain. London: Fourth Estate. Ramachandran, V., & Blakeslee, S. (1998). Phantoms in the brain. London: Fourth Estate.
go back to reference Raskin, S. (Red.). (2011). Neuroplasticity and rehabilitation. New York: Guilford. Raskin, S. (Red.). (2011). Neuroplasticity and rehabilitation. New York: Guilford.
go back to reference Rauschecker, J. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends in Neurosciences, 18, 36–43.PubMedCrossRef Rauschecker, J. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends in Neurosciences, 18, 36–43.PubMedCrossRef
go back to reference Rauschecker, J. (2003). Functional organization and plasticity of auditory cortex. In: Peretz & Zatorre: The cognitive neuroscience of music. Oxford: Oxford University Press. Rauschecker, J. (2003). Functional organization and plasticity of auditory cortex. In: Peretz & Zatorre: The cognitive neuroscience of music. Oxford: Oxford University Press.
go back to reference Renner, M., & Rosenzweig, M. (1987). Enriched and impoverished environments. New York: Springer. Renner, M., & Rosenzweig, M. (1987). Enriched and impoverished environments. New York: Springer.
go back to reference Rosenzweig, M., & Bennett, E. (1969). Effects of differential environments on brain weights and enzyme activities in gerbils, rats and mice. Developmental Psychobiology, 2, 87–95.PubMedCrossRef Rosenzweig, M., & Bennett, E. (1969). Effects of differential environments on brain weights and enzyme activities in gerbils, rats and mice. Developmental Psychobiology, 2, 87–95.PubMedCrossRef
go back to reference Sadato, N., et al. (1998). Neural networks for Braille reading by the blind. Brain, 121, 1213–1229.PubMedCrossRef Sadato, N., et al. (1998). Neural networks for Braille reading by the blind. Brain, 121, 1213–1229.PubMedCrossRef
go back to reference Sale, A. (2018). A systematic look at environmental modulation and its impact on brain development. Trends in Neurosciences, 41(1), 4–17.PubMedCrossRef Sale, A. (2018). A systematic look at environmental modulation and its impact on brain development. Trends in Neurosciences, 41(1), 4–17.PubMedCrossRef
go back to reference Sale, A., et al. (2008). Enrich the environment to empower the brain. Trends in Neuroscience, 12. Sale, A., et al. (2008). Enrich the environment to empower the brain. Trends in Neuroscience, 12.
go back to reference Sandmann, P., et al. (2012). Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain, 135, 555–568.PubMedCrossRef Sandmann, P., et al. (2012). Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain, 135, 555–568.PubMedCrossRef
go back to reference Schafe, G., et al. (2001). Memory consolidation of Pavlovian fear conditioning: A cellular and molecular perspective. Trends in Neurosciences, 24.PubMedCrossRef Schafe, G., et al. (2001). Memory consolidation of Pavlovian fear conditioning: A cellular and molecular perspective. Trends in Neurosciences, 24.PubMedCrossRef
go back to reference Schepers, I., et al. (2012). Functionally specific oscillatory activity correlates between visual and auditory cortex in the blind. Brain, 135, 922–934.PubMedCrossRef Schepers, I., et al. (2012). Functionally specific oscillatory activity correlates between visual and auditory cortex in the blind. Brain, 135, 922–934.PubMedCrossRef
go back to reference Scheffler, B., et al. (1999). Marrow-mindedness: A perspective on neuropoiesis. Trends in Neurosciences, 22, 348–357.PubMedCrossRef Scheffler, B., et al. (1999). Marrow-mindedness: A perspective on neuropoiesis. Trends in Neurosciences, 22, 348–357.PubMedCrossRef
go back to reference Schinder, A.F., & Poo, M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends in Neurosciences, 23(12):639–45. Schinder, A.F., & Poo, M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends in Neurosciences, 23(12):639–45.
go back to reference Schmid, M., et al. (2007). Equilibrium during static and dynamic tasks in blind subjects: No evidence of cross-modal plasticity. Brain, 130, 2097–2107.PubMedCrossRef Schmid, M., et al. (2007). Equilibrium during static and dynamic tasks in blind subjects: No evidence of cross-modal plasticity. Brain, 130, 2097–2107.PubMedCrossRef
go back to reference Seaberg, R., & Van der Kooy, D. (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. TINS, 26(3), 125–31. Seaberg, R., & Van der Kooy, D. (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. TINS, 26(3), 125–31.
go back to reference Segal, M., et al. (2000). Dendritic spine formation and pruning: Common cellular mechanisms? Trends in Neurosciences, 23, 53–57.PubMedCrossRef Segal, M., et al. (2000). Dendritic spine formation and pruning: Common cellular mechanisms? Trends in Neurosciences, 23, 53–57.PubMedCrossRef
go back to reference Shaw, C., & McEachern, J. (Red.). (2001). Toward a theory of neuroplasticity. Hove: Psychology Press. Shaw, C., & McEachern, J. (Red.). (2001). Toward a theory of neuroplasticity. Hove: Psychology Press.
go back to reference Squire, L., et al. (2003). Fundamental neuroscience (2nd ed.). Amsterdam: Academic Press. Squire, L., et al. (2003). Fundamental neuroscience (2nd ed.). Amsterdam: Academic Press.
go back to reference Stefan, K., et al. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123, 572–584.PubMedCrossRef Stefan, K., et al. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123, 572–584.PubMedCrossRef
go back to reference Stein, D., et al. (1995). Brain repair. Oxford: Oxford University Press. Stein, D., et al. (1995). Brain repair. Oxford: Oxford University Press.
go back to reference Steriade, M. (1999). Coherent oscillations and short-term plasticity in corticothalamic networks. Trends in Neurosciences, 22, 337–345.PubMedCrossRef Steriade, M. (1999). Coherent oscillations and short-term plasticity in corticothalamic networks. Trends in Neurosciences, 22, 337–345.PubMedCrossRef
go back to reference Thai-Van, H., et al. (2002). Local improvement in auditory frequency discrimination is associated with hearing-loss slope in subjects with cochlear damage. Brain, 125, 524–537.PubMedCrossRef Thai-Van, H., et al. (2002). Local improvement in auditory frequency discrimination is associated with hearing-loss slope in subjects with cochlear damage. Brain, 125, 524–537.PubMedCrossRef
go back to reference Thai-Van, H., et al. (2003). Enhanced frequency discrimination near the hearing loss cut-off: A consequence of central auditory plasticity induced by cochlear damage? Brain, 126, 2235–2245.PubMedCrossRef Thai-Van, H., et al. (2003). Enhanced frequency discrimination near the hearing loss cut-off: A consequence of central auditory plasticity induced by cochlear damage? Brain, 126, 2235–2245.PubMedCrossRef
go back to reference Tramontin, A., & Brenowitz, E. (2000). Seasonal plasticity in the adult brain. Trends in Neurosciences, 23, 251–258.PubMedCrossRef Tramontin, A., & Brenowitz, E. (2000). Seasonal plasticity in the adult brain. Trends in Neurosciences, 23, 251–258.PubMedCrossRef
go back to reference Trevarthen, C. (1990). Brain circuits and functions of mind. Essays in honor of Roger W. Sperry. Cambridge: Cambridge University Press. Trevarthen, C. (1990). Brain circuits and functions of mind. Essays in honor of Roger W. Sperry. Cambridge: Cambridge University Press.
go back to reference Van Cranenburgh, B. (2018). Muziek en brein. Haarlem: Stichting ITON. Van Cranenburgh, B. (2018). Muziek en brein. Haarlem: Stichting ITON.
go back to reference Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neuroscience, 32, 283–290. Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neuroscience, 32, 283–290.
go back to reference Vega-Bermudez, F., & Johnson, K. (2002). Spatial acuity after digit amputation. Brain, 125, 1256–1264.PubMedCrossRef Vega-Bermudez, F., & Johnson, K. (2002). Spatial acuity after digit amputation. Brain, 125, 1256–1264.PubMedCrossRef
go back to reference Vrbova, G., et al. (1991). Nerve-muscle interactions. London: Chapman and Hall. Vrbova, G., et al. (1991). Nerve-muscle interactions. London: Chapman and Hall.
go back to reference Walsh, R., & Greenough, T. (Red.). (1976). Environments as therapy for brain dysfunction. Advances in behavioral biology (Bd. 17). New York: Plenum. Walsh, R., & Greenough, T. (Red.). (1976). Environments as therapy for brain dysfunction. Advances in behavioral biology (Bd. 17). New York: Plenum.
go back to reference Weisz, N., et al. (2005). Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain, 128, 2722–2731.PubMedCrossRef Weisz, N., et al. (2005). Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain, 128, 2722–2731.PubMedCrossRef
go back to reference Werhahn, K., et al. (2002). Cortical excitability changes induced by deafferentiation of the contralateral hemisphere. Brain, 125, 1402–1413.PubMedCrossRef Werhahn, K., et al. (2002). Cortical excitability changes induced by deafferentiation of the contralateral hemisphere. Brain, 125, 1402–1413.PubMedCrossRef
go back to reference Wexler, E., & Palmer, T. (2002). Where, oh where, have my stem cells gone? Trends in Neurosciences, 25, 225.PubMedCrossRef Wexler, E., & Palmer, T. (2002). Where, oh where, have my stem cells gone? Trends in Neurosciences, 25, 225.PubMedCrossRef
go back to reference Wolpaw, J. (1997). The complex structure of a simple memory. Trends in Neurosciences, 20, 588–594.PubMedCrossRef Wolpaw, J. (1997). The complex structure of a simple memory. Trends in Neurosciences, 20, 588–594.PubMedCrossRef
go back to reference Würbel, H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends in Neurosciences, 24, 207.PubMedCrossRef Würbel, H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends in Neurosciences, 24, 207.PubMedCrossRef
go back to reference Ziemann, U., et al. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain, 124, 1171–1181.PubMedCrossRef Ziemann, U., et al. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain, 124, 1171–1181.PubMedCrossRef
go back to reference Zihl, J. (2000). Rehabilitation of visual disorders after brain injury. Hove: Psychology Press. Zihl, J. (2000). Rehabilitation of visual disorders after brain injury. Hove: Psychology Press.
go back to reference Zihl, J., & Von Cramon, D. (1985). Visual field recovery from scotoma in patients with postgeniculate damage. Brain, 108. Zihl, J., & Von Cramon, D. (1985). Visual field recovery from scotoma in patients with postgeniculate damage. Brain, 108.
Metagegevens
Titel
Plasticiteit
Auteur
Dr. Ben van Cranenburgh
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2318-0_3