Skip to main content
Top
Gepubliceerd in: Journal of Autism and Developmental Disorders 1/2022

25-02-2021 | Original Paper

Peak Alpha Frequency and Thalamic Structure in Children with Typical Development and Autism Spectrum Disorder

Auteurs: Heather L. Green, Marissa Dipiero, Simon Koppers, Jeffrey I. Berman, Luke Bloy, Song Liu, Emma McBride, Matthew Ku, Lisa Blaskey, Emily Kuschner, Megan Airey, Mina Kim, Kimberly Konka, Timothy P. L. Roberts, J. Christopher Edgar

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 1/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Associations between age, resting-state (RS) peak-alpha-frequency (PAF = frequency showing largest amplitude alpha activity), and thalamic volume (thalamus thought to modulate alpha activity) were examined to understand differences in RS alpha activity between children with autism spectrum disorder (ASD) and typically-developing children (TDC) noted in prior studies. RS MEG and structural-MRI data were obtained from 51 ASD and 70 TDC 6- to 18-year-old males. PAF and thalamic volume maturation were observed in TDC but not ASD. Although PAF was associated with right thalamic volume in TDC (R2 = 0.12, p = 0.01) but not ASD (R2 = 0.01, p = 0.35), this group difference was not large enough to reach significance. Findings thus showed unusual maturation of brain function and structure in ASD as well as an across-group thalamic contribution to alpha rhythms.
Voetnoten
1
Individuals on the autism spectrum, their parents, and professionals in the field differ regarding the use of person-first (e.g., children with ASD) or identity first (e.g., autistic child) language. With respect for divided opinions, both approaches to terminology are used (Kenny et al. 2016).
 
2
In the current sample, older children were more likely to have evaluable RS data. In particular, 76% of children ≥ 10 years old had evaluable RS data. The somewhat high rate of children with non-evaluable data is primarily due to the fact that in many of our early studies we collected only 2 min of eye-closed RS data. Increasing the length of the eyes-closed task to 5 + minutes has resulted in much higher success rates.
 
Literatuur
go back to reference Alvarez Amador, A., Valdés Sosa, P. A., PascualMarqui, R. D., Galan Garcia, L., Biscay Lirio, R., & Bosch Bayard, J. (1989). On the structure of EEG development. Electroencephalography and Clinical Neurophysiology, 73(1), 10–19.PubMedCrossRef Alvarez Amador, A., Valdés Sosa, P. A., PascualMarqui, R. D., Galan Garcia, L., Biscay Lirio, R., & Bosch Bayard, J. (1989). On the structure of EEG development. Electroencephalography and Clinical Neurophysiology, 73(1), 10–19.PubMedCrossRef
go back to reference Anderson, P., & Sears, T. A. (1964). The role of inhibition in the phasing of spontaneous thalamocortical discharge. The Journal of Physiology, 173, 459–480.CrossRef Anderson, P., & Sears, T. A. (1964). The role of inhibition in the phasing of spontaneous thalamocortical discharge. The Journal of Physiology, 173, 459–480.CrossRef
go back to reference Berger, H. (1929). Hans Berger on the electroencephalogram of man. ArchivfürPsychiatrie und Nervenkrankheiten, 87, 527–570.CrossRef Berger, H. (1929). Hans Berger on the electroencephalogram of man. ArchivfürPsychiatrie und Nervenkrankheiten, 87, 527–570.CrossRef
go back to reference Ciulla, C., Takeda, T., & Endo, H. (1999). MEG characterization of spontaneous alpha rhythm in the human brain. Brain Topography, 11(3), 211–222.PubMedCrossRef Ciulla, C., Takeda, T., & Endo, H. (1999). MEG characterization of spontaneous alpha rhythm in the human brain. Brain Topography, 11(3), 211–222.PubMedCrossRef
go back to reference Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Age and sex effects in the EEG: Development of the normal child. Clinical Neurophysiology, 112(5), 806–814.PubMedCrossRef Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Age and sex effects in the EEG: Development of the normal child. Clinical Neurophysiology, 112(5), 806–814.PubMedCrossRef
go back to reference Constantino, J. N., & Gruber, C. P. (2012). Social responsiveness scale-second edition (SRS-2). Torrance, CA: Western Psychological Services. Constantino, J. N., & Gruber, C. P. (2012). Social responsiveness scale-second edition (SRS-2). Torrance, CA: Western Psychological Services.
go back to reference Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245–254.PubMedCrossRef Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245–254.PubMedCrossRef
go back to reference Dustman, R. E., Shearer, D. E., & Emmerson, R. Y. (1999). Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. Clinical Neurophysiology, 110(8), 1399–1409.PubMedCrossRef Dustman, R. E., Shearer, D. E., & Emmerson, R. Y. (1999). Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. Clinical Neurophysiology, 110(8), 1399–1409.PubMedCrossRef
go back to reference Elliot, C. D. (2007). Differential ability scales (2nd ed.). San Antonio, TX: Pearson. Elliot, C. D. (2007). Differential ability scales (2nd ed.). San Antonio, TX: Pearson.
go back to reference Epstein, H. T. (1980). EEG developmental stages. Developmental Psychology, 13, 621–631. Epstein, H. T. (1980). EEG developmental stages. Developmental Psychology, 13, 621–631.
go back to reference Gage, N. M., Juranek, J., Filipek, P. A., Osann, K., Flodman, P., Isenberg, A. L., et al. (2009). Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: An MRI investigation. Journal of Neurodevelopmental Disorder, 1(3), 205–214. https://doi.org/10.1007/s11689-009-9010-2.CrossRef Gage, N. M., Juranek, J., Filipek, P. A., Osann, K., Flodman, P., Isenberg, A. L., et al. (2009). Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: An MRI investigation. Journal of Neurodevelopmental Disorder, 1(3), 205–214. https://​doi.​org/​10.​1007/​s11689-009-9010-2.CrossRef
go back to reference Galaburda, A. M., LeMay, M., Kemper, T. L., & Geschwind, N. (1978). Right-left asymmetrics in the brain. Science, 199(4331), 852–856.PubMedCrossRef Galaburda, A. M., LeMay, M., Kemper, T. L., & Geschwind, N. (1978). Right-left asymmetrics in the brain. Science, 199(4331), 852–856.PubMedCrossRef
go back to reference Gasser, T., Jennen-Steinmetz, C., Sroka, L., Verleger, R., & Möcks, J. (1988). Development of the EEG of school-age children and adolescents II. Topography. Electroencephalography and Clinical Neurophysiology, 69(2), 100–109.PubMedCrossRef Gasser, T., Jennen-Steinmetz, C., Sroka, L., Verleger, R., & Möcks, J. (1988). Development of the EEG of school-age children and adolescents II. Topography. Electroencephalography and Clinical Neurophysiology, 69(2), 100–109.PubMedCrossRef
go back to reference Gibbs, F. A., & Knott, J. R. (1949). Growth of the electrical activity of the cortex. Electroencephalography and Clinical Neurophysiology, 1(2), 223–229.PubMedCrossRef Gibbs, F. A., & Knott, J. R. (1949). Growth of the electrical activity of the cortex. Electroencephalography and Clinical Neurophysiology, 1(2), 223–229.PubMedCrossRef
go back to reference Hughes, J. R. (Ed.). (1987). Normal limits of the EEG. New York: Wiley. Hughes, J. R. (Ed.). (1987). Normal limits of the EEG. New York: Wiley.
go back to reference Hughes, S. W., Lörincz, M., Cope, D. W., Blethyn, K. L., Kékesi, K. A., Parri, H. R., et al. (2004). Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron, 42(2), 253–268.PubMedCrossRef Hughes, S. W., Lörincz, M., Cope, D. W., Blethyn, K. L., Kékesi, K. A., Parri, H. R., et al. (2004). Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron, 42(2), 253–268.PubMedCrossRef
go back to reference John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 1255–1258.PubMedCrossRef John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 1255–1258.PubMedCrossRef
go back to reference Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1–3), 319–340.PubMedCrossRef Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1–3), 319–340.PubMedCrossRef
go back to reference Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195.PubMedCrossRef Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195.PubMedCrossRef
go back to reference Klimesch, W., Doppelmayr, M., Schimke, H., & Pachinger, T. (1996). Alpha frequency, reaction time, and the speed of processing information. Journal of Clinical Neurophysiology, 13(6), 511–518.PubMedCrossRef Klimesch, W., Doppelmayr, M., Schimke, H., & Pachinger, T. (1996). Alpha frequency, reaction time, and the speed of processing information. Journal of Clinical Neurophysiology, 13(6), 511–518.PubMedCrossRef
go back to reference Larson, C. L., Davidson, R. J., Abercrombie, H. C., Ward, R. T., Schaefer, S. M., Jackson, D. C., et al. (1998). Relations between PET-derived measures of thalamic glucose metabolism and EEG alpha power. Psychophysiology, 35(2), 162–169.PubMedCrossRef Larson, C. L., Davidson, R. J., Abercrombie, H. C., Ward, R. T., Schaefer, S. M., Jackson, D. C., et al. (1998). Relations between PET-derived measures of thalamic glucose metabolism and EEG alpha power. Psychophysiology, 35(2), 162–169.PubMedCrossRef
go back to reference Lindgren, K. A., Larson, C. L., Schaefer, S. M., Abercrombie, H. C., Ward, R. T., Oakes, T. R., et al. (1999). Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biological Psychiatry, 45(8), 943–952.PubMedCrossRef Lindgren, K. A., Larson, C. L., Schaefer, S. M., Abercrombie, H. C., Ward, R. T., Oakes, T. R., et al. (1999). Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biological Psychiatry, 45(8), 943–952.PubMedCrossRef
go back to reference Lopes Da Silva, F. H., Van Lierop, T. H. M. T., Schrijer, C. F., & Storm Van Leeuwen, W. (1973). Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalography and Clinical Neurophysiology, 35(6), 627–639.CrossRef Lopes Da Silva, F. H., Van Lierop, T. H. M. T., Schrijer, C. F., & Storm Van Leeuwen, W. (1973). Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalography and Clinical Neurophysiology, 35(6), 627–639.CrossRef
go back to reference Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule - generic: A standard measure of social and commuciation deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRef Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule - generic: A standard measure of social and commuciation deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRef
go back to reference Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRef Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRef
go back to reference Matousek, M., & Petersén, I. (1973). Automatic evaluation of EEG background activity by means of age-dependent EEG quotients. Electroencephalography and Clinical Neurophysiology, 35(6), 603–612.PubMedCrossRef Matousek, M., & Petersén, I. (1973). Automatic evaluation of EEG background activity by means of age-dependent EEG quotients. Electroencephalography and Clinical Neurophysiology, 35(6), 603–612.PubMedCrossRef
go back to reference Matsuura, M., Yamamoto, K., Fukuzawa, H., Okubo, Y., Uesugi, H., Moriiwa, M., et al. (1985). Age development and sex differences of various EEG elements in healthy children and adults–quantification by a computerized wave form recognition method. Electroencephalography and Clinical Neurophysiology, 60(5), 394–406.PubMedCrossRef Matsuura, M., Yamamoto, K., Fukuzawa, H., Okubo, Y., Uesugi, H., Moriiwa, M., et al. (1985). Age development and sex differences of various EEG elements in healthy children and adults–quantification by a computerized wave form recognition method. Electroencephalography and Clinical Neurophysiology, 60(5), 394–406.PubMedCrossRef
go back to reference Niedermeyer, E. (1993). Maturation of the EEG: development of waking and sleep patterns. In E. Niedermeyer & F. H. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 167–191). Baltimore: Williams and Wilkins. Niedermeyer, E. (1993). Maturation of the EEG: development of waking and sleep patterns. In E. Niedermeyer & F. H. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 167–191). Baltimore: Williams and Wilkins.
go back to reference Niedermeyer, E. (1999). The normal EEG of the waking adult. Philadelphia: Williams and Wilkins. Niedermeyer, E. (1999). The normal EEG of the waking adult. Philadelphia: Williams and Wilkins.
go back to reference Nydén, A., Billstedt, E., Hjelmquist, E., & Gillberg, C. (2001). Neurocognitive stability in asperger syndrome, ADHD, and reading and writing disorder: A pilot study. Developmental Medicine and Child Neurology, 43(3), 165–171.PubMedCrossRef Nydén, A., Billstedt, E., Hjelmquist, E., & Gillberg, C. (2001). Neurocognitive stability in asperger syndrome, ADHD, and reading and writing disorder: A pilot study. Developmental Medicine and Child Neurology, 43(3), 165–171.PubMedCrossRef
go back to reference Oliveras-Rentas, R. E., Kenworthy, L., Roberson, R. B., Martin, A., & Wallace, G. L. (2012). WISC-IV profile in high-functioning autism spectrum disorders: Impaired processing speed is associated with increased autism communication symptoms and decreased adaptive communication abilities. Journal of Autism and Developmental Disorders, 42(5), 655–664. https://doi.org/10.1007/s10803-011-1289-7.CrossRefPubMedPubMedCentral Oliveras-Rentas, R. E., Kenworthy, L., Roberson, R. B., Martin, A., & Wallace, G. L. (2012). WISC-IV profile in high-functioning autism spectrum disorders: Impaired processing speed is associated with increased autism communication symptoms and decreased adaptive communication abilities. Journal of Autism and Developmental Disorders, 42(5), 655–664. https://​doi.​org/​10.​1007/​s10803-011-1289-7.CrossRefPubMedPubMedCentral
go back to reference Petersén, I., & Eeg-Olofsson, O. (1971). The development of the electroencephalogram in normal children from the age of 1 through 15 year non-paroxysmal activity. Neuropadiatrie, 2(3), 247–304.PubMedCrossRef Petersén, I., & Eeg-Olofsson, O. (1971). The development of the electroencephalogram in normal children from the age of 1 through 15 year non-paroxysmal activity. Neuropadiatrie, 2(3), 247–304.PubMedCrossRef
go back to reference Sadato, N., Nakamura, S., Oohashi, T., Nishina, E., Fuwamoto, Y., Waki, A., et al. (1998). Neural networks for generation and suppression of alpha rhythm: A PET study. NeuroReport, 9(5), 893–897.PubMedCrossRef Sadato, N., Nakamura, S., Oohashi, T., Nishina, E., Fuwamoto, Y., Waki, A., et al. (1998). Neural networks for generation and suppression of alpha rhythm: A PET study. NeuroReport, 9(5), 893–897.PubMedCrossRef
go back to reference Salmelin, R., & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalography and Clinical Neurophysiology, 91, 237–248.PubMedCrossRef Salmelin, R., & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalography and Clinical Neurophysiology, 91, 237–248.PubMedCrossRef
go back to reference Scherg, M., & Berg, P. (1996). New concepts of brain source imaging and localization. Electroencephalography and Clinical Neurophysiology, 46, 127–137. Scherg, M., & Berg, P. (1996). New concepts of brain source imaging and localization. Electroencephalography and Clinical Neurophysiology, 46, 127–137.
go back to reference Somsen, R. J., van’t Klooster, B. J., van der Molen, M. W., van Leeuwen, H. M., & Licht, R. (1997). Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biological Psychology, 44(3), 187–209.PubMedCrossRef Somsen, R. J., van’t Klooster, B. J., van der Molen, M. W., van Leeuwen, H. M., & Licht, R. (1997). Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biological Psychology, 44(3), 187–209.PubMedCrossRef
go back to reference Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320(1), 1–63.PubMed Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320(1), 1–63.PubMed
go back to reference Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1999). EEG alpha rhythm in infants. Clinical Neurophysiology, 110(6), 997–1012.PubMedCrossRef Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1999). EEG alpha rhythm in infants. Clinical Neurophysiology, 110(6), 997–1012.PubMedCrossRef
go back to reference Tsatsanis, K. D., Rourke, B. P., Klin, A., Volkmar, F. R., Cicchetti, D., & Schultz, R. T. (2003). Reduced thalamic volume in high-functioning individuals with autism. Biological Psychiatry, 53(2), 121–129.PubMedCrossRef Tsatsanis, K. D., Rourke, B. P., Klin, A., Volkmar, F. R., Cicchetti, D., & Schultz, R. T. (2003). Reduced thalamic volume in high-functioning individuals with autism. Biological Psychiatry, 53(2), 121–129.PubMedCrossRef
go back to reference Valdes, P., Valdes, M., Carballo, J. A., Alvarez, A., Diaz, G. F., Biscay, R., et al. (1992). QEEG in a public health system. Brain Topography, 4, 259–266.PubMedCrossRef Valdes, P., Valdes, M., Carballo, J. A., Alvarez, A., Diaz, G. F., Biscay, R., et al. (1992). QEEG in a public health system. Brain Topography, 4, 259–266.PubMedCrossRef
go back to reference Valdés, P., Valdés, M., Carballo, J. A., Alvarez, A., Díaz, G. F., Biscay, R., et al. (1992). QEEG in a public health system. Brain Topography, 4(4), 259–266.PubMedCrossRef Valdés, P., Valdés, M., Carballo, J. A., Alvarez, A., Díaz, G. F., Biscay, R., et al. (1992). QEEG in a public health system. Brain Topography, 4(4), 259–266.PubMedCrossRef
go back to reference Van Baal, G. C., De Geus, E. J., & Boomsma, D. I. (1996). Genetic architecture of EEG power spectra in early life. Electroencephalography and Clinical Neurophysiology, 98(6), 502–514.PubMedCrossRef Van Baal, G. C., De Geus, E. J., & Boomsma, D. I. (1996). Genetic architecture of EEG power spectra in early life. Electroencephalography and Clinical Neurophysiology, 98(6), 502–514.PubMedCrossRef
go back to reference van Beijsterveldt, C. E., & van Baal, G. C. (2002). Twin and family studies of the human electroencephalogram: A review and a meta-analysis. Biological Psychology, 61(1–2), 111–138.PubMedCrossRef van Beijsterveldt, C. E., & van Baal, G. C. (2002). Twin and family studies of the human electroencephalogram: A review and a meta-analysis. Biological Psychology, 61(1–2), 111–138.PubMedCrossRef
go back to reference Wechsler, D. (2003). Wechsler intelligence scale for children. Administration and scoring manual (4th ed.). San Antonio, TX: Harcourt Assessment Inc. Wechsler, D. (2003). Wechsler intelligence scale for children. Administration and scoring manual (4th ed.). San Antonio, TX: Harcourt Assessment Inc.
go back to reference Wechsler, D. (2011). “Wechsler abbreviated scale of intelligence” 2nd. San Antonio, TX: Pearson Clinical Assessment. Wechsler, D. (2011). “Wechsler abbreviated scale of intelligence” 2nd. San Antonio, TX: Pearson Clinical Assessment.
go back to reference Wechsler, D. (2014). Wechsler intelligence scale for children - (WISC-V): Technical and interpretive manual. Bloomington, MN: Pearson Clinical Assessment. Wechsler, D. (2014). Wechsler intelligence scale for children - (WISC-V): Technical and interpretive manual. Bloomington, MN: Pearson Clinical Assessment.
Metagegevens
Titel
Peak Alpha Frequency and Thalamic Structure in Children with Typical Development and Autism Spectrum Disorder
Auteurs
Heather L. Green
Marissa Dipiero
Simon Koppers
Jeffrey I. Berman
Luke Bloy
Song Liu
Emma McBride
Matthew Ku
Lisa Blaskey
Emily Kuschner
Megan Airey
Mina Kim
Kimberly Konka
Timothy P. L. Roberts
J. Christopher Edgar
Publicatiedatum
25-02-2021
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 1/2022
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-021-04926-9

Andere artikelen Uitgave 1/2022

Journal of Autism and Developmental Disorders 1/2022 Naar de uitgave